Molybdenum oxide electrodeposition on boron-doped diamond: Investigation of valence state and application in electrochemical nitrogen reduction to ammonia

[1]  Y. Einaga,et al.  Electrogenerated chemiluminescence at boron-doped diamond electrodes. , 2023, Chemical communications.

[2]  T. Navrátil,et al.  Recent advances in modified boron-doped diamond electrodes: A review , 2023, Electrochimica Acta.

[3]  Y. Einaga,et al.  Electrochemical CO2 reduction to CO facilitated by reduced boron-doped diamond , 2023, Diamond and Related Materials.

[4]  Y. Einaga Boron-Doped Diamond Electrodes: Fundamentals for Electrochemical Applications. , 2022, Accounts of chemical research.

[5]  Y. Einaga,et al.  Boron-Doped Diamond as a Quasi-Reference Electrode. , 2022, Analytical chemistry.

[6]  Y. Einaga,et al.  A New Pathway for CO2 Reduction Relying on the Self-Activation Mechanism of Boron-Doped Diamond Cathode , 2022, JACS Au.

[7]  Wilson A. Smith,et al.  Overcoming Nitrogen Reduction to Ammonia Detection Challenges: The Case for Leapfrogging to Gas Diffusion Electrode Platforms , 2022, ACS catalysis.

[8]  R. K. Parsapur,et al.  Limitations of Ammonia as a Hydrogen Energy Carrier for the Transportation Sector , 2021, ACS Energy Letters.

[9]  L. Tan,et al.  Hierarchical CoS2/MoS2 flower-like heterostructured arrays derived from polyoxometalates for efficient electrocatalytic nitrogen reduction under ambient conditions. , 2021, Journal of colloid and interface science.

[10]  Yuzi Liu,et al.  Synergistic Multisites Fe2Mo6S8 Electrocatalysts for Ambient Nitrogen Conversion to Ammonia. , 2021, ACS nano.

[11]  Irkham,et al.  Effect of Boron-Doping Level and Surface Termination in Diamond on Electrogenerated Chemiluminescence , 2021, ACS Applied Electronic Materials.

[12]  S. Shanmugam,et al.  Strong catalyst support interactions in defect-rich γ-Mo2N nanoparticles loaded 2D-h-BN hybrid for highly selective nitrogen reduction reaction , 2021 .

[13]  L. Lefferts,et al.  Beyond Haber-Bosch: The renaissance of the Claude process , 2021, International Journal of Hydrogen Energy.

[14]  S. Pennycook,et al.  Synergizing Mo Single Atoms and Mo2C Nanoparticles on CNTs Synchronizes Selectivity and Activity of Electrocatalytic N2 Reduction to Ammonia , 2020, Advanced materials.

[15]  Zhenyu Li,et al.  Single Faceted Two-Dimensional Mo2C Electrocatalyst for Highly Efficient Nitrogen Fixation , 2020, ACS Catalysis.

[16]  A. Pasquarelli,et al.  Prussian Blue modified boron-doped diamond interfaces for advanced H2O2 electrochemical sensors , 2020 .

[17]  Ya-li Guo,et al.  2D/2D Interface Engineering of MoS2/C3N4 Heterostructure for Promoted Electrocatalytic Nitrogen Fixation. , 2020, ACS applied materials & interfaces.

[18]  E. Filatova,et al.  Angle resolved photoelectron spectroscopy as applied to X-ray mirrors: an in depth study of Mo/Si multilayer systems. , 2019, Physical chemistry chemical physics : PCCP.

[19]  Ke Chu,et al.  Ambient electrocatalytic nitrogen reduction on a MoO2/graphene hybrid: experimental and DFT studies , 2019, Catalysis Science & Technology.

[20]  Adam C. Nielander,et al.  A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements , 2019, Nature.

[21]  Huijun Zhao,et al.  Dramatically Enhanced Ambient Ammonia Electrosynthesis Performance by In‐Operando Created Li–S Interactions on MoS2 Electrocatalyst , 2019, Advanced Energy Materials.

[22]  Xuping Sun,et al.  MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3 , 2018 .

[23]  Zhijiang Wang,et al.  Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm , 2017 .

[24]  S. Yazdani,et al.  Electrodeposition and characterization of metallic molybdenum from aqueous electrolytes containing high acetate concentrations , 2017 .

[25]  M. Symes,et al.  Recent progress towards the electrosynthesis of ammonia from sustainable resources , 2017 .

[26]  Beatriz Mendoza-Sánchez,et al.  Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. , 2015 .

[27]  R. C. Hubli,et al.  Electrodeposition of thick metallic amorphous molybdenum coating from aqueous electrolyte , 2015 .

[28]  Dennis R. Dean,et al.  Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage , 2014, Chemical reviews.

[29]  Chi-Woo Lee,et al.  Molybdenum, molybdenum oxides, and their electrochemistry. , 2012, ChemSusChem.

[30]  F. Bénard,et al.  The Deposition of Smooth Metallic Molybdenum from Aqueous Electrolytes Containing Molybdate Ions , 2012 .

[31]  B. Ruscic,et al.  Pulsed field-ionization photoelectron-photoion coincidence study of the process N2+hnu-->N++N+e-: bond dissociation energies of N2 and N2+. , 2005, The Journal of chemical physics.

[32]  Y. Einaga,et al.  Photo-assisted electrochemical CO2 reduction at boron-doped diamond cathode , 2023, Energy Advances.

[33]  Y. Einaga,et al.  An efficient, formic acid selective CO2 electrolyzer with a boron-doped diamond cathode , 2021 .

[34]  L. Hultman,et al.  X-ray photoelectron spectroscopy: Towards reliable binding energy referencing , 2020, Progress in Materials Science.

[35]  Ingrid Ivančić,et al.  An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method , 1984 .

[36]  M. Krom,et al.  Spectrophotometric determination of ammonia: a study of a modified Berthelot reaction using salicylate and dichloroisocyanurate , 1980 .