Quantitative theory of driven nonlinear brain dynamics

Strong periodic stimuli such as bright flashing lights evoke nonlinear responses in the brain and interact nonlinearly with ongoing cortical activity, but the underlying mechanisms for these phenomena are poorly understood at present. The dominant features of these experimentally observed dynamics are reproduced by the dynamics of a quantitative neural field model subject to periodic drive. Model power spectra over a range of drive frequencies show agreement with multiple features of experimental measurements, exhibiting nonlinear effects including entrainment over a range of frequencies around the natural alpha frequency f(α), subharmonic entrainment near 2f(α), and harmonic generation. Further analysis of the driven dynamics as a function of the drive parameters reveals rich nonlinear dynamics that is predicted to be observable in future experiments at high drive amplitude, including period doubling, bistable phase-locking, hysteresis, wave mixing, and chaos indicated by positive Lyapunov exponents. Moreover, photosensitive seizures are predicted for physiologically realistic model parameters yielding bistability between healthy and seizure dynamics. These results demonstrate the applicability of neural field models to the new regime of periodically driven nonlinear dynamics, enabling interpretation of experimental data in terms of specific generating mechanisms and providing new tests of the theory.

[1]  James J. Wright,et al.  Dynamics of the brain at global and microscopic scales: Neural networks and the EEG , 1996, Behavioral and Brain Sciences.

[2]  C. Stam,et al.  Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field , 2005, Clinical Neurophysiology.

[3]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[4]  H. Haken,et al.  Field Theory of Electromagnetic Brain Activity. , 1996, Physical review letters.

[5]  P. Robinson,et al.  Prediction of electroencephalographic spectra from neurophysiology. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  D H Kelly,et al.  Nonlinear visual responses to flickering sinusoidal gratings. , 1981, Journal of the Optical Society of America.

[7]  Lei Yang,et al.  Physiologically based calculation of steady-state evoked potentials and cortical wave velocities , 2008, Biological Cybernetics.

[8]  Peter A. Robinson,et al.  Physiology-based modeling of cortical auditory evoked potentials , 2008, Biological Cybernetics.

[9]  J. A. Roberts,et al.  Dynamics of epileptic seizures: evolution, spreading, and suppression. , 2009, Journal of theoretical biology.

[10]  L. Carmant,et al.  Interaction between the flash evoked SSVEPs and the spontaneous EEG activity in children and adults , 2006, Clinical Neurophysiology.

[11]  Gustavo Deco,et al.  The Brain Connectivity Workshops: Moving the frontiers of computational systems neuroscience , 2008, NeuroImage.

[12]  R. Guillery,et al.  Functional organization of thalamocortical relays. , 1996, Journal of neurophysiology.

[13]  Viktor Jirsa Neural field dynamics with local and global connectivity and time delay , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Krish D. Singh,et al.  Spatiotemporal frequency tuning of BOLD and gamma band MEG responses compared in primary visual cortex , 2008, NeuroImage.

[15]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[16]  James A. Roberts,et al.  Biophysical Mechanisms of Multistability in Resting-State Cortical Rhythms , 2011, The Journal of Neuroscience.

[17]  R. Jindra Mass action in the nervous system W. J. Freeman, Academic Press, New York (1975), 489 pp., (hard covers). $34.50 , 1976, Neuroscience.

[18]  J. Parra,et al.  Epilepsies as Dynamical Diseases of Brain Systems: Basic Models of the Transition Between Normal and Epileptic Activity , 2003, Epilepsia.

[19]  L. Glass Synchronization and rhythmic processes in physiology , 2001, Nature.

[20]  F. H. Lopes da Silva,et al.  Model of brain rhythmic activity , 1974, Kybernetik.

[21]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[22]  H. Spekreijse,et al.  SIGNAL TRANSPORT AND RECTIFICATION IN THE HUMAN EVOKED‐RESPONSE SYSTEM * , 1969, Annals of the New York Academy of Sciences.

[23]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[24]  Lin Yang,et al.  Linear and nonlinear relationships between visual stimuli, EEG and BOLD fMRI signals , 2010, NeuroImage.

[25]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[26]  P. Robinson,et al.  Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  P. Robinson,et al.  Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[29]  Karin Schwab,et al.  Modeling Brain Resonance Phenomena Using a Neural Mass Model , 2011, PLoS Comput. Biol..

[30]  F. L. D. Silva,et al.  Dynamics of the human alpha rhythm: evidence for non-linearity? , 1999, Clinical Neurophysiology.

[31]  William H. Press,et al.  Numerical recipes in C , 2002 .

[32]  J. Cowan,et al.  A mathematical theory of visual hallucination patterns , 1979, Biological Cybernetics.

[33]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[34]  Fabrice Wendling,et al.  Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals , 2000, Biological Cybernetics.

[35]  Vincent Walsh,et al.  Frequency-Dependent Electrical Stimulation of the Visual Cortex , 2008, Current Biology.

[36]  Axel Hutt,et al.  Analysis of nonlocal neural fields for both general and gamma-distributed connectivities , 2005 .

[37]  S. Amari Homogeneous nets of neuron-like elements , 1975, Biological Cybernetics.

[38]  K. D. Singh,et al.  Spectral properties of induced and evoked gamma oscillations in human early visual cortex to moving and stationary stimuli. , 2009, Journal of neurophysiology.

[39]  C. Elger,et al.  CAN EPILEPTIC SEIZURES BE PREDICTED? EVIDENCE FROM NONLINEAR TIME SERIES ANALYSIS OF BRAIN ELECTRICAL ACTIVITY , 1998 .

[40]  Frank Marten,et al.  Characterising the dynamics of EEG waveforms as the path through parameter space of a neural mass model: Application to epilepsy seizure evolution , 2012, NeuroImage.

[41]  Christian M Kerskens,et al.  Reduced BOLD response to periodic visual stimulation , 2004, NeuroImage.

[42]  E. Powers,et al.  Digital Bispectral Analysis and Its Applications to Nonlinear Wave Interactions , 1979, IEEE Transactions on Plasma Science.

[43]  P Naitoh,et al.  Stabilization of alpha frequency by sinusoidally modulated light. , 1975, Electroencephalography and clinical neurophysiology.

[44]  James J. Wright,et al.  Propagation and stability of waves of electrical activity in the cerebral cortex , 1997 .

[45]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[46]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[47]  Gerold Baier,et al.  A spatially extended model for macroscopic spike-wave discharges , 2011, Journal of Computational Neuroscience.

[48]  Peter N. Robinson,et al.  STEADY STATES AND GLOBAL DYNAMICS OF ELECTRICAL ACTIVITY IN THE CEREBRAL CORTEX , 1998 .

[49]  Karl J. Friston,et al.  Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri , 2022 .

[50]  Peter A. Robinson,et al.  Visual gamma oscillations: waves, correlations, and other phenomena, including comparison with experimental data , 2007, Biological Cybernetics.

[51]  L. Cao Practical method for determining the minimum embedding dimension of a scalar time series , 1997 .

[52]  Gustavo Deco,et al.  Computational models of the brain: From structure to function , 2010, NeuroImage.

[53]  Kaspar Anton Schindler,et al.  Intermittent spike–wave dynamics in a heterogeneous, spatially extended neural mass model , 2011, NeuroImage.

[54]  M. Kupersmith Human Brain Electrophysiology , 1989 .

[55]  P. Robinson,et al.  Modeling absence seizure dynamics: implications for basic mechanisms and measurement of thalamocortical and corticothalamic latencies. , 2008, Journal of theoretical biology.

[56]  Stephen Coombes,et al.  Waves, bumps, and patterns in neural field theories , 2005, Biological Cybernetics.

[57]  W. J. Nowack Neocortical Dynamics and Human EEG Rhythms , 1995, Neurology.

[58]  John R. Terry,et al.  A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. , 2006, Cerebral cortex.

[59]  Fabrice Wendling,et al.  The neuronal sources of EEG: Modeling of simultaneous scalp and intracerebral recordings in epilepsy , 2008, NeuroImage.

[60]  Raymond J. Dolan,et al.  Dynamic causal models of steady-state responses , 2009, NeuroImage.

[61]  Greiner,et al.  van der Pol behavior of relaxation oscillations in a periodically driven thermionic discharge. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[62]  Karl J. Friston,et al.  A neural mass model for MEG/EEG: coupling and neuronal dynamics , 2003, NeuroImage.

[63]  W. Singer,et al.  The response of cat visual cortex to flicker stimuli of variable frequency , 1998, The European journal of neuroscience.

[64]  Peter J. Siekmeier,et al.  Modeling GABA alterations in schizophrenia: a link between impaired inhibition and altered gamma and beta range auditory entrainment. , 2008, Journal of neurophysiology.

[65]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[66]  M. Breakspear,et al.  Bistability and Non-Gaussian Fluctuations in Spontaneous Cortical Activity , 2009, The Journal of Neuroscience.

[67]  Karl J. Friston,et al.  Dynamic causal modeling of evoked responses in EEG and MEG , 2006, NeuroImage.

[68]  C. Herrmann Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena , 2001, Experimental Brain Research.

[69]  Stephen Coombes,et al.  Large-scale neural dynamics: Simple and complex , 2010, NeuroImage.

[70]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[71]  S A Hillyard,et al.  Feature-selective attention enhances color signals in early visual areas of the human brain , 2006, Proceedings of the National Academy of Sciences.

[72]  Tanya I. Baker,et al.  Spontaneous pattern formation and pinning in the primary visual cortex , 2009, Journal of Physiology-Paris.

[73]  P. Nunez The brain wave equation: a model for the EEG , 1974 .

[74]  Jaime Parra,et al.  Photosensitivity and visually induced seizures: review , 2005, Current opinion in neurology.

[75]  W. Klimesch EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis , 1999, Brain Research Reviews.

[76]  Vittorio Porciatti,et al.  Lack of cortical contrast gain control in human photosensitive epilepsy , 2000, Nature Neuroscience.

[77]  P A Robinson,et al.  Estimation of multiscale neurophysiologic parameters by electroencephalographic means , 2004, Human brain mapping.

[78]  Jose M. Sanchez-Bornot,et al.  Model driven EEG/fMRI fusion of brain oscillations , 2009, Human brain mapping.

[79]  Karl J. Friston,et al.  Dynamic causal modeling with neural fields , 2012, NeuroImage.

[80]  Karl J. Friston,et al.  Neural fields, spectral responses and lateral connections , 2011, NeuroImage.

[81]  L. H. Van Der Tweel,et al.  HUMAN VISUAL RESPONSES TO SINUSOIDALLY MODULATED LIGHT. , 1965, Electroencephalography and clinical neurophysiology.

[82]  Martin Golubitsky,et al.  What Geometric Visual Hallucinations Tell Us about the Visual Cortex , 2002, Neural Computation.