Oxygen mass transfer in a gas/membrane/liquid system surrogate of membrane blood oxygenators

[1]  Kenny W. Q. Low,et al.  Formulation of generalised mass transfer correlations for blood oxygenator design , 2016 .

[2]  M. D. Pinho,et al.  Phase segregation and gas permeation properties of poly(urethane urea) bi-soft segment membranes , 2016 .

[3]  W. Federspiel,et al.  Darcy Permeability of Hollow Fiber Membrane Bundles Made from Membrana Polymethylpentene Fibers Used in Respiratory Assist Devices , 2016, ASAIO journal.

[4]  V. Geraldes,et al.  Surface Characterization of Asymmetric Bi-Soft Segment Poly(ester urethane urea) Membranes for Blood-Oxygenation Medical Devices , 2011, International journal of biomaterials.

[5]  M. D. Pinho,et al.  Tailoring bi-soft segment poly (ester urethane urea) integral asymmetric membranes for CO2 and O2 permeation , 2012 .

[6]  Thomas Langer,et al.  Clinical review: Extracorporeal membrane oxygenation , 2011, Critical care.

[7]  P. Brogueira,et al.  Sub-micron tailoring of bi-soft segment asymmetric polyurethane membrane surfaces with enhanced hemocompatibility properties. , 2011, Colloids and surfaces. B, Biointerfaces.

[8]  A. J. Guiomar,et al.  Characterization and in vitro hemocompatibility of bi-soft segment, polycaprolactone-based poly(ester urethane urea) membranes. , 2009, Journal of biomedical materials research. Part A.

[9]  T. Bein,et al.  A new miniaturized system for extracorporeal membrane oxygenation in adult respiratory failure , 2009, Critical care.

[10]  Bartley P. Griffith,et al.  Characterization of membrane blood oxygenation devices using computational fluid dynamics , 2007 .

[11]  V. Semião,et al.  Effects of ultrafiltration permeation rates on the hydrodynamics of a minichannel/slit laminar flow , 2006 .

[12]  M. W. Lim,et al.  The history of extracorporeal oxygenators * , 2006, Anaesthesia.

[13]  Kiyotaka Sakai,et al.  Oxygen transfer performance of a membrane oxygenator composed of crossed and parallel hollow fibers , 2005 .

[14]  S. Wickramasinghe,et al.  Designing Microporous Hollow Fibre Blood Oxygenators , 2005 .

[15]  Gerardo Catapano,et al.  Turbulent flow technique for the estimation of oxygen diffusive permeability of membranes for the oxygenation of blood and other cell suspensions , 2004 .

[16]  Binbing Han,et al.  Mass and momentum transfer in hollow fibre blood oxygenators , 2002 .

[17]  S. Wickramasinghe,et al.  Mass and momentum transfer in commercial blood oxygenators , 2002 .

[18]  S. Wickramasinghe,et al.  Mass and momentum transfer in blood oxygenators , 2002 .

[19]  Viriato Semiao,et al.  The effect on mass transfer of momentum and concentration boundary layers at the entrance region of a slit with a nanofiltration membrane wall , 2002 .

[20]  S Ranil Wickramasinghe,et al.  Mass Transfer in Blood Oxygenators Using Blood Analogue Fluids , 2002, Biotechnology progress.

[21]  Vítor Geraldes,et al.  Flow and mass transfer modelling of nanofiltration , 2001 .

[22]  Gerardo Catapano,et al.  Mass and Momentum Transport in Extra-Luminal Flow (ELF) Membrane Devices for Blood Oxygenation , 2001 .

[23]  Viriato Semiao,et al.  Numerical modelling of mass transfer in slits with semi‐permeable membrane walls , 2000 .

[24]  Vítor Geraldes,et al.  Nanofiltration mass transfer at the entrance region of a slit laminar flow , 1998 .

[25]  Edward L Cussler,et al.  Mass transfer in various hollow fiber geometries , 1992 .

[26]  L. Bergdahl,et al.  A comparison of flat-sheet and hollow-fiber membrane oxygenators: the Shiley M-2000 vs. the Bentley BOS-CM 40. , 1989, Texas Heart Institute journal.

[27]  Dianne E. Wiley,et al.  Optimisation of membrane module design for brackish water desalination , 1985 .

[28]  G. Thurston,et al.  Rheological parameters for the viscosity viscoelasticity and thixotropy of blood. , 1979, Biorheology.