Passivated aluminum nanohole arrays for label-free biosensing applications.

We report the fabrication and performance of a surface plasmon resonance aluminum nanohole array refractometric biosensor. An aluminum surface passivation treatment based on oxygen plasma is developed in order to circumvent the undesired effects of oxidation and corrosion usually found in aluminum-based biosensors. Immersion tests in deionized water and device simulations are used to evaluate the effectiveness of the passivation process. A label-free bioassay based on biotin analysis through biotin-functionalized dextran-lipase conjugates immobilized on the biosensor-passivated surface in aqueous media is performed as a proof of concept to demonstrate the suitability of these nanostructured aluminum films for biosensing.

[1]  David Pines,et al.  COLLECTIVE ENERGY LOSSES IN SOLIDS , 1956 .

[2]  E C Nice,et al.  Instrumental biosensors: new perspectives for the analysis of biomolecular interactions. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[3]  Nemanya Sedoglavich,et al.  Gold nanohole array substrates as immunobiosensors. , 2008, Analytical chemistry.

[4]  George C Schatz,et al.  Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons. , 2007, Optics express.

[5]  Thomas W. Ebbesen,et al.  The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures , 2005 .

[6]  Jing Zhao,et al.  Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. , 2006, Journal of the American Chemical Society.

[7]  Pierre Berini,et al.  Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing. , 2013, Lab on a chip.

[8]  Wei Xu,et al.  Surface plasmon polaritons: physics and applications , 2012 .

[9]  K. Kavanagh,et al.  Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[10]  Stefan Enoch,et al.  Theory of light transmission through subwavelength periodic hole arrays , 2000 .

[11]  Luis Martín-Moreno,et al.  Influence of material properties on extraordinary optical transmission through hole arrays , 2008 .

[12]  Development of a mass-producible on-chip plasmonic nanohole array biosensor. , 2011, Nanoscale.

[13]  Igor Zorić,et al.  Localized surface plasmon resonances in aluminum nanodisks. , 2008, Nano letters.

[14]  M. Qiu,et al.  Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. , 2006, Physical review letters.

[15]  D. Filippini,et al.  Surface plasmon resonance chemical sensing on cell phones. , 2012, Angewandte Chemie.

[16]  Henri Lezec,et al.  Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. , 2004, Optics express.

[17]  Kao-Der Chang,et al.  Universal scaling of plasmonic refractive index sensors. , 2013, Optics express.

[18]  Thomas W. Ebbesen,et al.  Fornel, Frédérique de , 2001 .

[19]  Thomas W. Ebbesen,et al.  Beyond the Bethe Limit: Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture , 1999 .

[20]  R. Wood,et al.  On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum , 1902 .

[21]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[22]  Jean-Francois Masson,et al.  Modern surface plasmon resonance for bioanalytics and biophysics. , 2013, Physical chemistry chemical physics : PCCP.

[23]  Domenico Pacifici,et al.  Universal optical transmission features in periodic and quasiperiodic hole arrays. , 2008, Optics express.

[24]  Carlos Escobedo,et al.  On-chip nanohole array based sensing: a review. , 2013, Lab on a chip.

[25]  J. Homola Present and future of surface plasmon resonance biosensors , 2003, Analytical and bioanalytical chemistry.

[26]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[27]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[28]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[29]  Levi A. Gheber,et al.  Dextran-lipase conjugates as tools for low molecular weight ligand immobilization in microarray development. , 2013, Analytical chemistry.

[30]  Q. Cheng,et al.  New trends in instrumental design for surface plasmon resonance-based biosensors. , 2011, Biosensors & bioelectronics.

[31]  A. Brolo,et al.  Periodic metallic nanostructures as plasmonic chemical sensors. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[32]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[33]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[34]  J. Pendry,et al.  Theory of extraordinary optical transmission through subwavelength hole arrays. , 2000, Physical review letters.

[35]  Xudong Fan,et al.  On the performance quantification of resonant refractive index sensors. , 2008, Optics express.

[36]  G. Zheng,et al.  Design of a highly sensitive surface plasmon resonance sensor using aluminum-based diffraction grating , 2012 .

[37]  Sang‐Hyun Oh,et al.  Engineering metallic nanostructures for plasmonics and nanophotonics , 2012, Reports on progress in physics. Physical Society.

[38]  H. Bethe Theory of Diffraction by Small Holes , 1944 .

[39]  P. Lalanne,et al.  Microscopic theory of the extraordinary optical transmission , 2008, Nature.

[40]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[41]  Jeremy B. Wright,et al.  Chemoselective gas sensors based on plasmonic nanohole arrays , 2012 .

[42]  John A Rogers,et al.  Nanostructured plasmonic sensors. , 2008, Chemical reviews.

[43]  Hyungsoon Im,et al.  Atomic layer deposition of dielectric overlayers for enhancing the optical properties and chemical stability of plasmonic nanoholes. , 2010, ACS nano.

[44]  David J. Norris,et al.  Linewidth‐Optimized Extraordinary Optical Transmission in Water with Template‐Stripped Metallic Nanohole Arrays , 2012 .

[45]  Sang‐Hyun Oh,et al.  Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics. , 2012, Analytical chemistry.

[46]  Harry A Atwater,et al.  Plasmonic color filters for CMOS image sensor applications. , 2012, Nano letters.

[47]  J. Homola,et al.  Surface plasmon resonance sensing of nucleic acids: a review. , 2013, Analytica chimica acta.

[48]  P. Stark,et al.  Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology. , 2005, Methods.

[49]  K. Kavanagh,et al.  A new generation of sensors based on extraordinary optical transmission. , 2008, Accounts of chemical research.

[50]  J. Hogle,et al.  Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation. , 2009, Biosensors & bioelectronics.

[51]  D. Sinton,et al.  On-chip surface-based detection with nanohole arrays. , 2007, Analytical chemistry.

[52]  Yeshaiahu Fainman,et al.  Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor , 2007 .

[53]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[54]  Anuj Dhawan,et al.  EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays. , 2012, The Analyst.

[55]  George C. Schatz,et al.  Tailoring the parameters of nanohole arrays in gold films for sensing applications , 2007, SPIE NanoScience + Engineering.

[56]  Thomas W. Ebbesen,et al.  Surface plasmons enhance optical transmission through subwavelength holes , 1998 .

[57]  Alp Artar,et al.  Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes , 2010 .