Non-linear theories of beams and plates accounting for moderate rotations and material length scales

[1]  J. N. Reddy,et al.  Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions , 2014 .

[2]  J. Reddy,et al.  Eringen’s nonlocal theories of beams accounting for moderate rotations , 2014 .

[3]  C. Wang,et al.  On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach , 2014, Archive of Applied Mechanics.

[4]  J. Reddy,et al.  Modified couple stress-based third-order theory for nonlinear analysis of functionally graded beams , 2014 .

[5]  J. Reddy,et al.  Analytical solutions for bending, vibration, and buckling of FGM plates using a couple stress-based third-order theory , 2013 .

[6]  J. Reddy,et al.  A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory , 2013 .

[7]  J. Reddy,et al.  A non-classical third-order shear deformation plate model based on a modified couple stress theory , 2013 .

[8]  J. N. Reddy,et al.  Generalized beam theories accounting for von Kármán nonlinear strains with application to buckling , 2013 .

[9]  J. Reddy,et al.  Nonlinear analysis of functionally graded microstructure-dependent beams , 2013 .

[10]  J. Reddy,et al.  Analysis of Mindlin micro plates with a modified couple stress theory and a meshless method , 2013 .

[11]  J. Reddy,et al.  A model for a constrained, finitely deforming, elastic solid with rotation gradient dependent strain energy, and its specialization to von Kármán plates and beams , 2013 .

[12]  J. Reddy,et al.  Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory , 2013 .

[13]  J. N. Reddy,et al.  A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method , 2013 .

[14]  J. N. Reddy,et al.  Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress , 2012 .

[15]  L. Ke,et al.  Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory , 2012 .

[16]  L. Ke,et al.  Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory , 2012 .

[17]  J. N. Reddy,et al.  A nonlinear modified couple stress-based third-order theory of functionally graded plates , 2012 .

[18]  A Lubk,et al.  Flexoelectric rotation of polarization in ferroelectric thin films. , 2011, Nature materials.

[19]  J. Reddy MICROSTRUCTURE-DEPENDENT COUPLE STRESS THEORIES OF FUNCTIONALLY GRADED BEAMS , 2011 .

[20]  J. N. Reddy,et al.  A non-classical Mindlin plate model based on a modified couple stress theory , 2011 .

[21]  J. Reddy Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates , 2010 .

[22]  Marco Amabili,et al.  A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells , 2010 .

[23]  Sarp Adali,et al.  Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler-Bernoulli beam model. , 2009, Nano letters.

[24]  J. N. Reddy,et al.  A microstructure-dependent Timoshenko beam model based on a modified couple stress theory , 2008 .

[25]  S. K. Park,et al.  Variational formulation of a modified couple stress theory and its application to a simple shear problem , 2008 .

[26]  C. Wang,et al.  The small length scale effect for a non-local cantilever beam: a paradox solved , 2008, Nanotechnology.

[27]  J. N. Reddy,et al.  Nonlocal continuum theories of beams for the analysis of carbon nanotubes , 2008 .

[28]  Pradeep Sharma,et al.  A novel atomistic approach to determine strain-gradient elasticity constants: Tabulation and comparison for various metals, semiconductors, silica, polymers and the (Ir) relevance for nanotechnologies , 2007 .

[29]  J. N. Reddy,et al.  Nonlocal theories for bending, buckling and vibration of beams , 2007 .

[30]  S. K. Park,et al.  Bernoulli–Euler beam model based on a modified couple stress theory , 2006 .

[31]  C. Wang,et al.  Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory , 2006 .

[32]  Vijay K. Varadan,et al.  Vibration of carbon nanotubes studied using nonlocal continuum mechanics , 2006 .

[33]  Quan Wang,et al.  Wave propagation in carbon nanotubes via nonlocal continuum mechanics , 2005 .

[34]  Georg S. Duesberg,et al.  Transparent carbon nanotube coatings , 2005 .

[35]  Gui-Rong Liu,et al.  Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity , 2005 .

[36]  Andrew W. Mcfarland,et al.  Role of material microstructure in plate stiffness with relevance to microcantilever sensors , 2005 .

[37]  Gui-Rong Liu,et al.  Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression , 2004 .

[38]  J. Reddy An introduction to nonlinear finite element analysis , 2004 .

[39]  Werner J. Blau,et al.  Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area , 2004 .

[40]  L. Sudak,et al.  Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics , 2003 .

[41]  Fan Yang,et al.  Experiments and theory in strain gradient elasticity , 2003 .

[42]  John Peddieson,et al.  Application of nonlocal continuum models to nanotechnology , 2003 .

[43]  Weizhen Chen,et al.  Tribological application of carbon nanotubes in a metal-based composite coating and composites , 2003 .

[44]  P. Tong,et al.  Couple stress based strain gradient theory for elasticity , 2002 .

[45]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[46]  P. M. Naghdi,et al.  A unified procedure for construction of theories of deformable media. II. Generalized continua , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[47]  J. Reddy An introduction to the finite element method , 1989 .

[48]  Rüdiger Schmidt,et al.  A Refined Small Strain and Moderate Rotation Theory of Elastic Anisotropic Shells , 1988 .

[49]  J. N. Reddy,et al.  A Small Strain and Moderate Rotation Theory of Elastic Anisotropic Plates , 1987 .

[50]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[51]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[52]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[53]  P. M. Naghdi,et al.  DIRECTORS AND MULTIPOLAR DISPLACEMENTS IN CONTINUUM MECHANICS , 1965 .

[54]  J. Reddy,et al.  Vibration of Timoshenko beams using non-classical elasticity theories , 2012 .

[55]  J. N. Reddy,et al.  A Nonclassical Reddy-Levinson Beam Model Based on a Modified Couple Stress Theory , 2010 .

[56]  J. N. Reddy,et al.  An Introduction to CONTINUUM MECHANICS with Applications , 2007 .

[57]  Demosthenes Polyzos,et al.  Bending and stability analysis of gradient elastic beams , 2003 .

[58]  J. N. Reddy,et al.  Energy principles and variational methods in applied mechanics , 2002 .

[59]  A. Eringen,et al.  Nonlocal Continuum Field Theories , 2002 .

[60]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[61]  R. Lakes,et al.  Experimental study of micropolar and couple stress elasticity in compact bone in bending. , 1982, Journal of biomechanics.

[62]  A. C. Eringen,et al.  Nonlocal polar elastic continua , 1972 .

[63]  P. M. Naghdi,et al.  MICROPOLAR AND DIRECTOR THEORIES OF PLATES , 1967 .

[64]  R. Toupin,et al.  Theories of elasticity with couple-stress , 1964 .

[65]  Raymond D. Mindlin,et al.  Influence of couple-stresses on stress concentrations , 1963 .

[66]  W. T. Koiter Couple-stresses in the theory of elasticity , 1963 .