Near-lossless compression of 3-D optical data

In this work, near-lossless compression yielding strictly bounded reconstruction error is proposed for high-quality compression of remote sensing images. A classified causal DPCM scheme is presented for optical data, either multi/hyperspectral three-dimensional (3-D) or panchromatic two-dimensional (2-D) observations. It is based on a classified linear-regression prediction, followed by context-based arithmetic coding of the outcome prediction errors and provides excellent performances, both for reversible and for irreversible (near-lossless) compression. Coding times are affordable thanks to fast convergence of training. Decoding is always real time. If the reconstruction errors fall within the boundaries of the noise distributions, the decoded images will be virtually lossless even though encoding was not strictly reversible.

[1]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[2]  J. Saghri,et al.  Near-lossless bandwidth compression for radiometric data , 1991 .

[3]  Pamela C. Cosman,et al.  Evaluating quality of compressed medical images: SNR, subjective rating, and diagnostic accuracy , 1994, Proc. IEEE.

[4]  V. D. Vaughn,et al.  System considerations for multispectral image compression designs , 1995, IEEE Signal Process. Mag..

[5]  J. Rissanen,et al.  Applications of universal context modeling to lossless compression of gray-scale images , 1995 .

[6]  Luciano Alparone,et al.  Advantages of bidirectional spectral prediction for the reversible compression of multispectral data , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[7]  Peter No,et al.  Digital Coding of Waveforms , 1986 .

[8]  Tenkasi V. Ramabadran,et al.  Near-lossless compression of medical images through entropy-coded DPCM , 1994, IEEE Trans. Medical Imaging.

[9]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[10]  Tenkasi V. Ramabadran,et al.  The use of contextual information in the reversible compression of medical images , 1992, IEEE Trans. Medical Imaging.

[11]  Luciano Alparone,et al.  Information-theoretic assessment of sampled hyperspectral imagers , 2001, IEEE Trans. Geosci. Remote. Sens..

[12]  K. R. Rao,et al.  Techniques and Standards for Image, Video, and Audio Coding , 1996 .

[13]  Johannes R. Sveinsson,et al.  Classification and feature extraction of AVIRIS data , 1995, IEEE Trans. Geosci. Remote. Sens..

[14]  Ashok K. Rao,et al.  Multispectral data compression using bidirectional interband prediction , 1996, IEEE Trans. Geosci. Remote. Sens..

[15]  K. H. Barratt Digital Coding of Waveforms , 1985 .

[16]  John F. Arnold,et al.  The lossless compression of AVIRIS images by vector quantization , 1997, IEEE Trans. Geosci. Remote. Sens..

[17]  L. Alparone,et al.  Context modeling for near-lossless image coding , 2002, IEEE Signal Processing Letters.

[18]  Jindi Wang,et al.  Spectral and spatial decorrelation of Landsat-TM data for lossless compression , 1995, IEEE Trans. Geosci. Remote. Sens..

[19]  Luciano Alparone,et al.  Information preserving storage of remote sensing data: virtually lossless compression of optical and SAR images , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[20]  Luciano Alparone,et al.  Near lossless image compression by relaxation labeled prediction , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[21]  Guillermo Sapiro,et al.  The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS , 2000, IEEE Trans. Image Process..

[22]  R. E. Roger,et al.  Lossless compression of AVIRIS images , 1996, IEEE Trans. Image Process..

[23]  Luciano Alparone,et al.  Lossless compression of multi/hyper-spectral imagery based on a 3-D fuzzy prediction , 1999, IEEE Trans. Geosci. Remote. Sens..

[24]  Nasir Memon,et al.  Context-Based Lossless Interband , 2000 .

[25]  John F. Arnold,et al.  Lossy compression of hyperspectral data using vector quantization , 1997 .

[26]  Xiaolin Wu,et al.  Linfinity constrained high-fidelity image compression via adaptive context modeling , 2000, IEEE Trans. Image Process..

[27]  Luciano Alparone,et al.  A pyramid-based error-bounded encoder: An evaluation on X-ray chest images , 1997, Signal Process..

[28]  Xiaolin Wu,et al.  L/sub /spl infin//-constrained high-fidelity image compression via adaptive context modeling , 1997, Proceedings DCC '97. Data Compression Conference.

[29]  John F. Arnold,et al.  Reversible image compression bounded by noise , 1994, IEEE Trans. Geosci. Remote. Sens..