Simple Chaotic Flow with Circle and Square Equilibrium

Simple systems of third-order autonomous nonlinear differential equations can exhibit chaotic behavior. In this paper, we present a new class of chaotic flow with a square-shaped equilibrium. This unique property has apparently not yet been described. Such a system belongs to a newly introduced category of chaotic systems with hidden attractors that are interesting and important in engineering applications. The mathematical model is accompanied by an electrical circuit implementation, demonstrating structural stability of the strange attractor. The circuit is simulated with PSpice, constructed, and analyzed (measured).

[1]  Sundarapandian Vaidyanathan,et al.  A no-equilibrium hyperchaotic system with a cubic nonlinear term , 2016 .

[2]  Ivan Zelinka,et al.  Evolutionary identification of hidden chaotic attractors , 2016, Eng. Appl. Artif. Intell..

[3]  Julien Clinton Sprott,et al.  Simple Chaotic flows with One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.

[4]  Viet-Thanh Pham,et al.  A Novel No-Equilibrium Chaotic System with Multiwing Butterfly Attractors , 2015, Int. J. Bifurc. Chaos.

[5]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[6]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[7]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with a single non-hyperbolic equilibrium , 2015 .

[8]  Anda Xiong,et al.  Classifying and quantifying basins of attraction. , 2015, Chaos.

[9]  Tomas Gotthans,et al.  New class of chaotic systems with circular equilibrium , 2015 .

[10]  T. Gotthans,et al.  Modeling Deterministic Chaos Using Electronic Circuits , 2011 .

[11]  Julien Clinton Sprott,et al.  A chaotic system with a single unstable node , 2015 .

[12]  Julien Clinton Sprott,et al.  A Proposed Standard for the Publication of New Chaotic Systems , 2011, Int. J. Bifurc. Chaos.

[13]  Julien Clinton Sprott,et al.  Strange attractors with various equilibrium types , 2015 .

[14]  J. Petrzela,et al.  Optimal Piecewise-Linear Approximation of the Quadratic Chaotic Dynamics , 2012 .

[15]  Julien Clinton Sprott,et al.  Linearization of the Lorenz system , 2015 .

[16]  J. Sprott Elegant Chaos: Algebraically Simple Chaotic Flows , 2010 .

[17]  G. Leonov,et al.  A short survey on Lyapunov dimension for finite dimensional dynamical systems in Euclidean space , 2015, 1510.03835.

[18]  Viet-Thanh Pham,et al.  Constructing a Novel No-Equilibrium Chaotic System , 2014, Int. J. Bifurc. Chaos.