An Introduction to the Theory of Coalgebras

[1]  Benjamin C. Pierce,et al.  Basic category theory for computer scientists , 1991, Foundations of computing.

[2]  Alexander Kurz,et al.  Specifying Coalgebras with Modal Logic , 1998, CMCS.

[3]  Martin Rößiger From modal logic to terminal coalgebras , 2001 .

[4]  Lawrence S. Moss,et al.  Coalgebraic Logic , 1999, Ann. Pure Appl. Log..

[5]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[6]  Thomas Sudkamp,et al.  Languages and Machines , 1988 .

[7]  Andrea Corradini,et al.  A complete calculus for equational deduction in coalgebraic specification , 1997 .

[8]  R. Goldblatt Mathematics of modality , 1993 .

[9]  Bart Jacobs,et al.  Many-Sorted Coalgebraic Modal Logic: a Model-theoretic Study , 2001, RAIRO Theor. Informatics Appl..

[10]  Corina Cîrstea,et al.  An Algebra-Coalgebra Framework for System Specification , 2000, CMCS.

[11]  James Worrell Toposes of Coalgebras and Hidden Algebras , 1998, CMCS.

[12]  R. Goldblatt Logics of Time and Computation , 1987 .

[13]  Jan Rutten,et al.  On the foundations of final coalgebra semantics: non-well-founded sets, partial orders, metric spaces , 1998, Mathematical Structures in Computer Science.

[14]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[15]  H. Peter Gumm,et al.  Products of coalgebras , 2001 .

[16]  Dirk Pattinson Expressive Logics for Coalgebras via Terminal Sequence Induction , 2004, Notre Dame J. Formal Log..

[17]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[18]  Jan J. M. M. Rutten,et al.  Automata and Coinduction (An Exercise in Coalgebra) , 1998, CONCUR.

[19]  C. Pollard,et al.  Center for the Study of Language and Information , 2022 .

[20]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[21]  John Power,et al.  An axiomatics for categories of coalgebras , 1998, CMCS.

[22]  Markus Roggenbach,et al.  CoCASL at Work -- Modelling Process Algebra , 2003, CMCS.

[23]  R. Goldblatt Metamathematics of modal logic , 1974, Bulletin of the Australian Mathematical Society.

[24]  B. Jacobs,et al.  A tutorial on (co)algebras and (co)induction , 1997 .

[25]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[26]  Jiří Adámek,et al.  Free algebras and automata realizations in the language of categories , 1974 .

[27]  Dirk Pattinson,et al.  Semantical Principles in the Modal Logic of Coalgebras , 2001, STACS.

[28]  Wolfgang Wechler,et al.  Universal Algebra for Computer Scientists , 1992, EATCS Monographs on Theoretical Computer Science.

[29]  Martin Rö,et al.  From modal logic to terminal coalgebras , 2001, Theor. Comput. Sci..

[30]  Alexander Kurz A Co-Variety-Theorem for Modal Logic , 1998, Advances in Modal Logic.

[31]  Michael Makkai,et al.  Accessible categories: The foundations of categorical model theory, , 2007 .

[32]  Michael Barr,et al.  Terminal Coalgebras in Well-Founded Set Theory , 1993, Theor. Comput. Sci..

[33]  Jan J. M. M. Rutten Relators and Metric Bisimulations , 1998, CMCS.

[34]  Jirí Adámek,et al.  On the Greatest Fixed Point of a Set Functor , 1995, Theor. Comput. Sci..

[35]  Peter Aczel,et al.  Non-well-founded sets , 1988, CSLI lecture notes series.

[36]  Stephan Merz,et al.  Model Checking , 2000 .

[37]  Alexandru Baltag,et al.  A Logic for Coalgebraic Simulation , 2000, CMCS.

[38]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[39]  Dirk Pattinson,et al.  Coalgebraic modal logic: soundness, completeness and decidability of local consequence , 2003, Theor. Comput. Sci..

[40]  Michael Barr,et al.  Category theory for computing science , 1995, Prentice Hall International Series in Computer Science.

[41]  H. Peter Gumm Equational and implicational classes of coalgebras , 2001, Theor. Comput. Sci..

[42]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[43]  Bart Jacobs,et al.  Structural Induction and Coinduction in a Fibrational Setting , 1998, Inf. Comput..

[44]  Gordon D. Plotkin,et al.  Towards a mathematical operational semantics , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[45]  Martin Rößiger,et al.  Coalgebras and Modal Logic , 2000, CMCS.

[46]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[47]  Falk Bartels,et al.  Generalised coinduction , 2003, Mathematical Structures in Computer Science.

[48]  Horst Reichel,et al.  An approach to object semantics based on terminal co-algebras , 1995, Mathematical Structures in Computer Science.

[49]  H. Gumm Elements Of The General Theory Of Coalgebras , 1999 .

[50]  James Worrell,et al.  On the structure of categories of coalgebras , 2001, Theor. Comput. Sci..

[51]  J. H. Geuvers,et al.  Inductive and Coinductive Types with Iteration and Recursion , 1992 .

[52]  Jiří Adámek,et al.  From Varieties of Algebras to Covarieties of Coalgebras , 2001, CMCS.

[53]  Krister Segerberg,et al.  An essay in classical modal logic , 1971 .

[54]  G. M. Kelly,et al.  A $2$-categorical approach to change of base and geometric morphisms I , 1991 .

[55]  James Worrell,et al.  Terminal sequences for accessible endofunctors , 1999, CMCS.

[56]  Tarmo Uustalu,et al.  Primitive (Co)Recursion and Course-of-Value (Co)Iteration, Categorically , 1999, Informatica.

[57]  Jesse Hughes,et al.  The Coalgebraic Dual Of Birkhoff's Variety Theorem , 2000 .