Minkowski tensors of anisotropic spatial structure

This paper describes the theoretical foundation of and explicit algorithms for a novel approach to morphology and anisotropy analysis of complex spatial structure using tensor-valued Minkowski functionals, the so-called Minkowski tensors. Minkowski tensors are generalizations of the well-known scalar Minkowski functionals and are explicitly sensitive to anisotropic aspects of morphology, relevant for example for elastic moduli or permeability of microstructured materials. Here we derive explicit linear-time algorithms to compute these tensorial measures for three-dimensional shapes. These apply to representations of any object that can be represented by a triangulation of its bounding surface; their application is illustrated for the polyhedral Voronoi cellular complexes of jammed sphere configurations and for triangulations of a biopolymer fibre network obtained by confocal microscopy. The paper further bridges the substantial notational and conceptual gap between the different but equivalent approaches to scalar or tensorial Minkowski functionals in mathematics and in physics, hence making the mathematical measure theoretic formalism more readily accessible for future application in the physical sciences.

[1]  P-M König,et al.  Morphological thermodynamics of fluids: shape dependence of free energies. , 2004, Physical review letters.

[2]  Klaus Mecke,et al.  Minimal surface scaffold designs for tissue engineering. , 2011, Biomaterials.

[3]  Klaus Mecke,et al.  Strong dependence of percolation thresholds on polydispersity , 2002 .

[4]  Morphometric analysis in gamma-ray astronomy using Minkowski functionals - Source detection via structure quantification , 2013, 1304.3732.

[5]  T. Ryan,et al.  Quantification and visualization of anisotropy in trabecular bone , 2004, Journal of microscopy.

[6]  C. Broedersz,et al.  Microscopic origins of nonlinear elasticity of biopolymer networks , 2007 .

[7]  S. Alesker Description of Continuous Isometry Covariant Valuations on Convex Sets , 1999 .

[8]  Tomaso Aste,et al.  Volume fluctuations and geometrical constraints in granular packs. , 2006, Physical review letters.

[9]  F Graner,et al.  Discrete rearranging disordered patterns, part I: Robust statistical tools in two or three dimensions , 2007, The European physical journal. E, Soft matter.

[10]  R. Schneider,et al.  The space of isometry covariant tensor valuations , 2007 .

[11]  K. Mecke,et al.  Motion by stopping: rectifying Brownian motion of nonspherical particles. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  A. Böker,et al.  Large scale alignment of a lamellar block copolymer thin film via electric fields: a time-resolved SFM study. , 2006, Soft matter.

[13]  K. Mecke,et al.  Deformation of Platonic foam cells: effect on growth rate. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Edwin L. Thomas,et al.  The gyroid: A new equilibrium morphology in weakly segregated diblock copolymers , 1994 .

[15]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[16]  K. Mecke,et al.  Local anisotropy of fluids using Minkowski tensors , 2010, 1009.0601.

[17]  Daniel Hug,et al.  Integral geometry of tensor valuations , 2008, Adv. Appl. Math..

[18]  H. Wagner,et al.  Extended morphometric analysis of neuronal cells with Minkowski valuations , 2005, cond-mat/0507648.

[19]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[20]  Kenneth M. Yamada,et al.  Taking Cell-Matrix Adhesions to the Third Dimension , 2001, Science.

[21]  Klaus Mecke,et al.  Tensorial Minkowski functionals of triply periodic minimal surfaces , 2012, Interface Focus.

[22]  Mixed curvature measures for sets of positive reach and a translative integral formula , 1995 .

[23]  Stephan Herminghaus,et al.  Jammed frictional tetrahedra are hyperstatic. , 2011, Physical review letters.

[24]  Rangasami L. Kashyap,et al.  Building Skeleton Models via 3-D Medial Surface/Axis Thinning Algorithms , 1994, CVGIP Graph. Model. Image Process..

[26]  K. Mecke,et al.  Characterization of the dynamics of block copolymer microdomains with local morphological measures. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  T. Aste,et al.  Onset of mechanical stability in random packings of frictional spheres. , 2007, Physical review letters.

[28]  Christoph H. Arns,et al.  Characterisation of irregular spatial structures by parallel sets and integral geometric measures , 2004 .

[29]  Jerome J. Morgan New Method for the Determination of Potassium in Silicates. , 1921 .

[30]  M. Sonka,et al.  A Fully Parallel 3D Thinning Algorithm and Its Applications , 1996, Comput. Vis. Image Underst..

[31]  Thomas H. Epps,et al.  A Noncubic Triply Periodic Network Morphology in Poly(isoprene-b-styrene-b-ethylene oxide) Triblock Copolymers , 2002 .

[32]  D. Hug,et al.  Minkowski Tensor Shape Analysis of Cellular, Granular and Porous Structures , 2011, Advanced materials.

[33]  D. Reinelt,et al.  Structure of random monodisperse foam. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  G. Matheron Random Sets and Integral Geometry , 1976 .

[35]  Mark A. Knackstedt,et al.  Imaging of metallic foams using X-ray micro-CT , 2009 .

[36]  T. Aste,et al.  Local and global relations between the number of contacts and density in monodisperse sphere packs , 2006, 0709.3141.

[37]  L. Santaló Integral geometry and geometric probability , 1976 .

[38]  Gioacchino Viggiani,et al.  Advances in X-ray Tomography for Geomaterials , 2006 .

[39]  Dave H. Eberly Game Physics , 2003 .

[40]  Soap Froths and Crystal Structures , 2003 .

[41]  S. Hyde,et al.  Parametrization of triply periodic minimal surfaces. I : Mathematical basis of the construction algorithm for the regular class , 1992 .

[42]  T. Hashimoto,et al.  Microdomain structures with hyperbolic interfaces in block and graft copolymer systems , 1996 .

[43]  P. Krsek Algorithms for Computing Curvatures from Range Data , 2001 .

[44]  Mecke Morphological characterization of patterns in reaction-diffusion systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  Punam K Saha,et al.  Spatial autocorrelation and mean intercept length analysis of trabecular bone anisotropy applied to in vivo magnetic resonance imaging. , 2007, Medical physics.

[46]  Masatoshi Saitou,et al.  Stripe pattern formation in ag–sb co-electrodeposition , 2005 .

[47]  Francois Graner,et al.  Deformation of grain boundaries in polar ice , 2003, cond-mat/0309081.

[48]  H. Swinney,et al.  Correlation between Voronoi volumes in disc packings , 2011, 1109.0935.

[49]  Schick,et al.  Stable and unstable phases of a diblock copolymer melt. , 1994, Physical review letters.

[50]  F. Stillinger,et al.  Improving the Density of Jammed Disordered Packings Using Ellipsoids , 2004, Science.

[51]  Gerd E. Schröder-Turk,et al.  Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter. , 2012, The Journal of chemical physics.

[52]  L. Evans Measure theory and fine properties of functions , 1992 .

[53]  K. Mecke,et al.  Tensorial density functional theory for non-spherical hard-body fluids , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[54]  G. Debrégeas,et al.  Local stress relaxation and shear banding in a dry foam under shear. , 2002, Physical review letters.

[55]  Milan Sonka,et al.  A Fully Parallel 3D Thinning Algorithm and Its Applications , 1996, Comput. Vis. Image Underst..

[56]  K. Mecke,et al.  Curvature expansion of density profiles , 2005 .

[57]  T. Aste,et al.  An invariant distribution in static granular media , 2006, cond-mat/0612063.

[58]  Ziherl,et al.  Soap froths and crystal structures , 2000, Physical review letters.

[59]  Francois Graner,et al.  Foam in a two-dimensional Couette shear: a local measurement of bubble deformation , 2005, Journal of Fluid Mechanics.

[60]  H. Heijmans Morphological image operators , 1994 .

[61]  Ben Fabry,et al.  Robust pore size analysis of filamentous networks from three-dimensional confocal microscopy. , 2008, Biophysical journal.

[62]  Crystallographic aspects of the Bonnet transformation for periodic minimal surfaces (and crystals of films) , 1993 .

[63]  Geoff P. Delaney,et al.  Tomographic analysis of jammed ellipsoid packings , 2013 .

[64]  G. Schröder-Turk,et al.  A bicontinuous mesophase geometry with hexagonal symmetry. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[65]  J. Ying,et al.  A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface. , 2009, Nature chemistry.

[66]  K. Mecke,et al.  Tensorial Minkowski functionals and anisotropy measures for planar patterns , 2010, Journal of microscopy.

[67]  F. Reiss-Husson,et al.  Structure of the Cubic Phases of Lipid–Water Systems , 1966, Nature.

[68]  Tomaso Aste,et al.  Variations around disordered close packing , 2005 .

[69]  U. Rüde,et al.  Permeability of porous materials determined from the Euler characteristic. , 2012, Physical review letters.

[70]  P. V. Pantulu,et al.  Crystal symmetry and physical properties: Application of group theory , 1949 .

[71]  Ralf Blossey,et al.  Complex dewetting scenarios captured by thin-film models , 2003, Nature materials.

[72]  A. Schoen Infinite periodic minimal surfaces without self-intersections , 1970 .

[73]  Michael O'Keeffe,et al.  A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics. , 2008, Angewandte Chemie.

[74]  D. Reinelt,et al.  Structure of random foam. , 2004, Physical review letters.

[75]  B. Lubachevsky,et al.  Disks vs. spheres: Contrasting properties of random packings , 1991 .

[76]  Jan Rataj,et al.  Analysis of planar anisotropy by means of the Steiner compact , 1989 .

[77]  K. Mecke,et al.  Solvation of proteins: linking thermodynamics to geometry. , 2007, Physical review letters.

[78]  Daniel Hug,et al.  Minkowski tensor density formulas for Boolean models , 2013, Adv. Appl. Math..

[79]  D. Weitz,et al.  Elastic Behavior of Cross-Linked and Bundled Actin Networks , 2004, Science.

[80]  R. Mann,et al.  Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor , 1984 .

[81]  B. Lubachevsky,et al.  Crystalline—amorphous interface packings for disks and spheres , 1993 .

[82]  Klaus Mecke,et al.  Additivity, Convexity, and Beyond: Applications of Minkowski Functionals in Statistical Physics , 2000 .

[83]  G. Last,et al.  Does polynomial parallel volume imply convexity? , 2004 .

[84]  Alfred Gray,et al.  Modern differential geometry of curves and surfaces with Mathematica (2. ed.) , 1998 .

[85]  G. Schröder-Turk,et al.  Bicontinuous geometries and molecular self-assembly: comparison of local curvature and global packing variations in genus-three cubic, tetragonal and rhombohedral surfaces , 2006 .

[86]  Takao Ohta,et al.  Dynamics and rheology of complex interfaces. I , 1991 .

[87]  Martin van Hecke,et al.  Kinematics: Wide shear zones in granular bulk flow , 2003, Nature.

[88]  Klaus Mecke,et al.  Fundamental measure theory for inhomogeneous fluids of nonspherical hard particles. , 2009, Physical review letters.

[89]  Klaus Mecke,et al.  Jammed spheres: Minkowski tensors reveal onset of local crystallinity. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  H. Müller Über Momente ersten und zweiten Grades in der Integralgeometrie , 1953 .

[91]  John Banhart,et al.  Structure and deformation correlation of closed-cell aluminium foam subject to uniaxial compression , 2012 .

[92]  Klaus Mecke,et al.  Topological estimation of percolation thresholds , 2007, 0708.3251.

[93]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[94]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[95]  Aleksandar Donev,et al.  Experiments on random packings of ellipsoids. , 2005, Physical review letters.

[96]  D. Stavenga,et al.  Gyroid cuticular structures in butterfly wing scales: biological photonic crystals , 2007, Journal of The Royal Society Interface.

[97]  W. J. Whitehouse The quantitative morphology of anisotropic trabecular bone , 1974, Journal of microscopy.

[98]  W. Weil,et al.  Stochastic and Integral Geometry , 2008 .

[99]  Claus Beisbart,et al.  Vector- und Tensor-Valued Descriptors for Spatial Patterns , 2002 .

[100]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[101]  Stephen T. Hyde,et al.  Continuous transformations of cubic minimal surfaces , 1999 .

[102]  S. Pietruszczak,et al.  Characterization of anisotropy in porous media by means of linear intercept measurements , 2003 .

[103]  Ramin Farnood,et al.  Characterizing Anisotropy of the Deterministic Features in Paper Structure with Wavelet Transforms , 2007 .

[104]  James A. Glazier,et al.  A texture tensor to quantify deformations , 2003 .

[105]  Aleš Linka,et al.  Analysis of Planar Anisotropy of Fibre Systems by Using 2D Fourier Transform , 2007 .

[106]  D. Rowe Vector coherent state representations and their inner products , 2012, 1207.0126.

[107]  Joy Dunkers,et al.  Quantifying the directional parameter of structural anisotropy in porous media. , 2006, Tissue engineering.

[108]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[109]  Ralph Müller,et al.  Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. , 2006, Biomaterials.

[110]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[111]  Alexander Böker,et al.  Electric field alignment of a block copolymer nanopattern: direct observation of the microscopic mechanism. , 2009, ACS nano.

[112]  Sharon C. Glotzer,et al.  Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra , 2009, Nature.

[113]  K. Mecke,et al.  Fluids in porous media: a morphometric approach , 2005 .

[114]  D. Weitz,et al.  Robust Pore Size Analysis of Filamentous Networks from 3D Confocal Microscopy , 2009 .

[115]  H. Hadwiger Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .

[116]  J. Sethian,et al.  Multiscale Modeling of Membrane Rearrangement, Drainage, and Rupture in Evolving Foams , 2013, Science.

[117]  S. Hyde,et al.  Parametrization of triply periodic minimal surfaces. II. Regular class solutions , 1992 .

[118]  I. Chavel Riemannian Geometry: Subject Index , 2006 .

[119]  Srikanth Sastry,et al.  What do we learn from the local geometry of glass-forming liquids? , 2002, Physical review letters.

[120]  Geoff P. Delaney,et al.  Disordered spherical bead packs are anisotropic , 2010 .

[121]  John A. Pedersen,et al.  Mechanobiology in the Third Dimension , 2005, Annals of Biomedical Engineering.

[122]  Rachid Harba,et al.  A new anisotropy index on trabecular bone radiographic images using the fast Fourier transform , 2005, BMC Medical Imaging.

[123]  W. Mickel Geometry controlled phase behavior in nanowetting and jamming , 2011 .

[124]  J. Nitsche,et al.  Vorlesungen über Minimalflächen , 1975 .

[125]  S. Edwards,et al.  Statistical mechanics of powder mixtures , 1989 .

[126]  J. Durrell,et al.  Statistical characterization of surface morphologies , 2006 .

[127]  P. Danielsson Euclidean distance mapping , 1980 .

[128]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[129]  Pierre Alliez,et al.  Computational geometry algorithms library , 2008, SIGGRAPH '08.

[130]  Paul W. Cleary,et al.  The packing properties of superellipsoids , 2010 .

[131]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[132]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[133]  Hirokazu Hasegawa,et al.  Bicontinuous microdomain morphology of block copolymers. 1. Tetrapod-network structure of polystyrene-polyisoprene diblock polymers , 1987 .

[134]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[135]  Arshad Kudrolli,et al.  Diffusion and mixing in gravity-driven dense granular flows. , 2004, Physical review letters.

[136]  H J Gundersen,et al.  Estimation of structural anisotropy based on volume orientation. A new concept , 1990, Journal of microscopy.

[137]  Stereological Characterization of Structural Anisotropy of Rolled Steel , 2005, Microscopy and Microanalysis.

[138]  Sepp D. Kohlwein,et al.  Cubic membranes: a legend beyond the Flatland* of cell membrane organization , 2006, The Journal of cell biology.

[139]  Geoff P. Delaney,et al.  Minkowski Tensors and Local Structure Metrics: Amorphous and Crystalline Sphere Packings , 2013 .