A New Crystal Phase Molybdate Yb2Mo4O15: The Synthesis and Upconversion Properties

A new upconversion nanocrystal phase Yb2Mo4O15:Er is developed by using a facile aqueous‐precipitation procedure combined with thermal annealing. Nanocrystals of Yb2Mo4O15 are exclusively synthesized, with particle sizes ranging from 1 to 20 nm. The optical properties are characterized and a high upconversion quantum yield is determined to be ≈1.3% at room temperature, under excitation of ≈500 mW cm−2 IR (975 nm). To the best of our knowledge, this is the first work concerning the synthesis of nanocrystalline Yb2Mo4O15 and the characterization of its upconversion properties, which possesses the potential to be utilized in bio‐probing and thin‐film optoelectronic device applications.

[1]  B. Yan,et al.  RE2(MO4)3:Ln3+ (RE = Y, La, Gd, Lu; M = W, Mo; Ln = Eu, Sm, Dy) microcrystals: controlled synthesis, microstructure and tunable luminescence , 2013 .

[2]  Wei Huang,et al.  Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. , 2013, Chemical Society reviews.

[3]  Up-conversion semiconducting MoO3:Yb/Er nanocomposites as buffer layer in organic solar cells , 2012 .

[4]  Xiaogang Liu,et al.  Photonics: Upconversion goes broadband. , 2012, Nature materials.

[5]  Jeffrey M. Gordon,et al.  Multiple-bandgap vertical-junction architectures for ultra-efficient concentrator solar cells , 2012 .

[6]  Jan C. Hummelen,et al.  Broadband dye-sensitized upconversion of near-infrared light , 2012, Nature Photonics.

[7]  Yang Yang,et al.  Solution Processed MoO3 Interfacial Layer for Organic Photovoltaics Prepared by a Facile Synthesis Method , 2012, Advanced materials.

[8]  Solar cells: Folding photons , 2012 .

[9]  Christoph J. Brabec,et al.  High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension , 2011 .

[10]  C. Brabec,et al.  Rare‐Earth Ion Doped Up‐Conversion Materials for Photovoltaic Applications , 2011, Advanced materials.

[11]  A. Cheetham,et al.  Efficient oxide phosphors for light upconversion; green emission from Yb3+ and Ho3+ co-doped Ln2BaZnO5 (Ln = Y, Gd) , 2011 .

[12]  Jens Meyer,et al.  MoO3 Films Spin‐Coated from a Nanoparticle Suspension for Efficient Hole‐Injection in Organic Electronics , 2011, Advanced materials.

[13]  Zheng-Hong Lu,et al.  Universal energy-level alignment of molecules on metal oxides. , 2011, Nature materials.

[14]  Isabelle Etchart Metal oxides for efficient infrared to visible upconversion , 2010 .

[15]  F. Castellano,et al.  Supermolecular-chromophore-sensitized near-infrared-to-visible photon upconversion. , 2010, Journal of the American Chemical Society.

[16]  John-Christopher Boyer,et al.  Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. , 2010, Nanoscale.

[17]  Xueyuan Chen,et al.  Upconversion nanoparticles in biological labeling, imaging, and therapy. , 2010, The Analyst.

[18]  T. Nann,et al.  Size and shape evolution of upconverting nanoparticles using microwave assisted synthesis , 2010 .

[19]  A. Cheetham,et al.  Oxide phosphors for efficient light upconversion: Yb3+ and Er3+ co-doped Ln2BaZnO5 (Ln = Y, Gd) , 2010 .

[20]  F. Liu,et al.  Efficient polymer photovoltaic cells using solution-processed MoO3 as anode buffer layer , 2010 .

[21]  J. Bünzli,et al.  Lanthanide luminescence for functional materials and bio-sciences. , 2010, Chemical Society reviews.

[22]  T. Nann,et al.  Monodisperse upconverting nanocrystals by microwave-assisted synthesis. , 2009, ACS nano.

[23]  Judith Grimm,et al.  Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+ , 2006 .

[24]  Vishal Shrotriya,et al.  Transition metal oxides as the buffer layer for polymer photovoltaic cells , 2006 .

[25]  M. Haase,et al.  Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide‐Doped NaYF4 Nanocrystals , 2004 .

[26]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[27]  Richard H. Friend,et al.  Inorganic solution-processed hole-injecting and electron-blocking layers in polymer light-emitting diodes , 2002 .

[28]  R. Tenne Fullerene-like materials and nanotubes from inorganic compounds with a layered (2-D) structure , 2002 .

[29]  F. Goutenoire,et al.  Synthesis and Characterization of the Anionic Conductor System La2Mo2O9-0.5xFx (x = 0.02−0.30) , 2002 .

[30]  Wojtek Wlodarski,et al.  Comparison of single and binary oxide MoO3, TiO2 and WO3 sol–gel gas sensors , 2002 .

[31]  Z. Hussain Optical and electrochromic properties of heated and annealed MoO_3 thin films , 2001 .

[32]  G. J. Snyder,et al.  Potential of Chevrel phases for thermoelectric applications , 1999 .

[33]  S. Oyama,et al.  True and Spectator Intermediates in Catalysis: The Case of Ethanol Oxidation on Molybdenum Oxide As Observed by in Situ Laser Raman Spectroscopy , 1996 .

[34]  Y. Messaddeq,et al.  Blue and green upconversion in Er3+-doped fluoroindate glasses , 1993 .

[35]  J. Lunsford,et al.  PARTIAL OXIDATION OF METHANE BY NITROUS OXIDE OVER MOLYBDENUM ON SILICA , 1984 .

[36]  John E. Roberts,et al.  Lanthanum and Neodymium Salts of Trifluoroacetic Acid , 1961 .