Non-coding RNAs in the reprogramming of glucose metabolism in cancer.

[1]  Yingying Liu,et al.  LincRNA‐p21 knockdown enhances radiosensitivity of hypoxic tumor cells by reducing autophagy through HIF‐1/Akt/mTOR/P70S6K pathway , 2017, Experimental cell research.

[2]  Xiaodong Zhang,et al.  Promotion of glycolysis by HOTAIR through GLUT1 upregulation via mTOR signaling. , 2017, Oncology reports.

[3]  T. Cech,et al.  How do lncRNAs regulate transcription? , 2017, Science Advances.

[4]  B. Wang,et al.  Long non-coding RNA PVT1 promotes glycolysis and tumor progression by regulating miR-497/HK2 axis in osteosarcoma. , 2017, Biochemical and biophysical research communications.

[5]  Q. Ye,et al.  miR-30a-5p suppresses breast tumor growth and metastasis through inhibition of LDHA-mediated Warburg effect. , 2017, Cancer letters.

[6]  Y. Liu,et al.  The miR-125a/HK2 axis regulates cancer cell energy metabolism reprogramming in hepatocellular carcinoma , 2017, Scientific Reports.

[7]  A. Veronese,et al.  Regulation of miR-483-3p by the O-linked N-acetylglucosamine transferase links chemosensitivity to glucose metabolism in liver cancer cells , 2017, Oncogenesis.

[8]  Yuquan Wei,et al.  Long Noncoding RNA LINC00092 Acts in Cancer-Associated Fibroblasts to Drive Glycolysis and Progression of Ovarian Cancer. , 2017, Cancer research.

[9]  Q. Pan,et al.  MicroRNA-98 Suppress Warburg Effect by Targeting HK2 in Colon Cancer Cells , 2017, Digestive Diseases and Sciences.

[10]  Q. Hu,et al.  Involvement of EZH2 in aerobic glycolysis of prostate cancer through miR-181b/HK2 axis , 2017, Oncology reports.

[11]  A. Navarro,et al.  LincRNA‐p21 Impacts Prognosis in Resected Non–Small Cell Lung Cancer Patients through Angiogenesis Regulation , 2016, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[12]  Kazuhiro Yoshida,et al.  MiR‐133b inhibits growth of human gastric cancer cells by silencing pyruvate kinase muscle‐splicer polypyrimidine tract‐binding protein 1 , 2016, Cancer science.

[13]  B. Gan,et al.  lncRNA NBR2 modulates cancer cell sensitivity to phenformin through GLUT1 , 2016, Cell cycle.

[14]  W. Zhang,et al.  LncRNA ANRIL is up-regulated in nasopharyngeal carcinoma and promotes the cancer progression via increasing proliferation, reprograming cell glucose metabolism and inducing side-population stem-like cancer cells , 2016, Oncotarget.

[15]  Qiang Huang,et al.  miRNA-451 inhibits glioma cell proliferation and invasion by downregulating glucose transporter 1 , 2016, Tumor Biology.

[16]  Xiaonan Li,et al.  Double mutant P53 (N340Q/L344R) promotes hepatocarcinogenesis through upregulation of Pim1 mediated by PKM2 and LncRNA CUDR , 2016, Oncotarget.

[17]  M. Ferracin,et al.  Over-expression of the miR-483-3p overcomes the miR-145/TP53 pro-apoptotic loop in hepatocellular carcinoma , 2016, Oncotarget.

[18]  W. Du,et al.  SCO2 Mediates Oxidative Stress‐Induced Glycolysis to Oxidative Phosphorylation Switch in Hematopoietic Stem Cells , 2016, Stem cells.

[19]  Kazuhiro Yoshida,et al.  PTBP1-associated microRNA-1 and -133b suppress the Warburg effect in colorectal tumors , 2016, Oncotarget.

[20]  Hailin Tang,et al.  The miR-34a-LDHA axis regulates glucose metabolism and tumor growth in breast cancer , 2016, Scientific Reports.

[21]  C. Roberts,et al.  Targeting EZH2 in cancer , 2016, Nature Medicine.

[22]  J. Nielsen,et al.  Stratification of Hepatocellular Carcinoma Patients Based on Acetate Utilization. , 2015, Cell reports.

[23]  P. Puigserver,et al.  Cancer Cells Hijack Gluconeogenic Enzymes to Fuel Cell Growth. , 2015, Molecular cell.

[24]  L. Holmberg,et al.  Serum lactate dehydrogenase and survival following cancer diagnosis , 2015, British Journal of Cancer.

[25]  P. Liang,et al.  miR-125a inhibits the migration and invasion of liver cancer cells via suppression of the PI3K/AKT/mTOR signaling pathway. , 2015, Oncology letters.

[26]  U. Günther,et al.  Metabolic plasticity in CLL: adaptation to the hypoxic niche , 2015, Leukemia.

[27]  J. Lieberman,et al.  miR-34 and p53: New Insights into a Complex Functional Relationship , 2015, PloS one.

[28]  S. Barni,et al.  Prognostic role of lactate dehydrogenase in solid tumors: A systematic review and meta-analysis of 76 studies , 2015, Acta oncologica.

[29]  Hui Jiang,et al.  The c-Myc–LDHA axis positively regulates aerobic glycolysis and promotes tumor progression in pancreatic cancer , 2015, Medical Oncology.

[30]  Kalpana Ghoshal,et al.  miR-122 is a unique molecule with great potential in diagnosis, prognosis of liver disease, and therapy both as miRNA mimic and antimir. , 2015, Current gene therapy.

[31]  Lin Zhu,et al.  MicroRNA‑135b regulates the stability of PTEN and promotes glycolysis by targeting USP13 in human colorectal cancers. , 2015, Oncology reports.

[32]  Weiying Zhou,et al.  Breast cancer-secreted miR-122 reprograms glucose metabolism in pre-metastatic niche to promote metastasis , 2015, Nature Cell Biology.

[33]  Jian-yong Li,et al.  miR-26a and miR-214 down-regulate expression of the PTEN gene in chronic lymphocytic leukemia, but not PTEN mutation or promoter methylation , 2014, Oncotarget.

[34]  Mei Xue,et al.  Long non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase 2 through the mTOR–STAT3/microRNA143 pathway , 2014, Cancer science.

[35]  Jun Yu,et al.  Identification of microRNA-135b in Stool as a Potential Noninvasive Biomarker for Colorectal Cancer and Adenoma , 2014, Clinical Cancer Research.

[36]  J. Nielsen,et al.  Identification of anticancer drugs for hepatocellular carcinoma through personalized genome‐scale metabolic modeling , 2014, Molecular systems biology.

[37]  Angela M. Liu,et al.  miR-122 Targets Pyruvate Kinase M2 and Affects Metabolism of Hepatocellular Carcinoma , 2014, PloS one.

[38]  Fan Yang,et al.  Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect. , 2014, Molecular cell.

[39]  N. Seki,et al.  Tumor‐suppressive microRNA‐143/145 cluster targets hexokinase‐2 in renal cell carcinoma , 2013, Cancer science.

[40]  N. Seki,et al.  Tumor‐suppressive microRNA‐1291 directly regulates glucose transporter 1 in renal cell carcinoma , 2013, Cancer science.

[41]  Chaochun Liu,et al.  The imprinted H19 lncRNA antagonizes let-7 microRNAs. , 2013, Molecular cell.

[42]  E. Cho,et al.  p53 regulates glucose metabolism by miR-34a. , 2013, Biochemical and biophysical research communications.

[43]  G. Mills,et al.  Tat‐activating regulatory DNA‐binding protein regulates glycolysis in hepatocellular carcinoma by regulating the platelet isoform of phosphofructokinase through microRNA 520 , 2013, Hepatology.

[44]  B. Thorens,et al.  The SLC2 (GLUT) family of membrane transporters. , 2013, Molecular aspects of medicine.

[45]  A. Levine,et al.  miR-143 regulates hexokinase 2 expression in cancer cells , 2013, Oncogene.

[46]  Q. Sun,et al.  Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop , 2013, Oncogene.

[47]  David G. Knowles,et al.  The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression , 2012, Genome research.

[48]  Hsien-Da Huang,et al.  MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. , 2012, The Journal of clinical investigation.

[49]  M. Caligiuri,et al.  Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. , 2012, The Journal of clinical investigation.

[50]  P. Ward,et al.  Signaling in control of cell growth and metabolism. , 2012, Cold Spring Harbor perspectives in biology.

[51]  Ling Tian,et al.  MicroRNA‐7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3‐kinase/Akt pathway in hepatocellular carcinoma , 2012, Hepatology.

[52]  H. Ji,et al.  MicroRNA-143 (miR-143) Regulates Cancer Glycolysis via Targeting Hexokinase 2 Gene* , 2012, The Journal of Biological Chemistry.

[53]  N. Seki,et al.  The functional significance of miR-1 and miR-133a in renal cell carcinoma. , 2012, European journal of cancer.

[54]  P. Pandolfi,et al.  Systemic Elevation of PTEN Induces a Tumor-Suppressive Metabolic State , 2012, Cell.

[55]  R. Hamanaka,et al.  Targeting glucose metabolism for cancer therapy , 2012, The Journal of experimental medicine.

[56]  Franziska Hirschhaeuser,et al.  Lactate: a metabolic key player in cancer. , 2011, Cancer research.

[57]  N. Seki,et al.  Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer , 2011, British Journal of Cancer.

[58]  Gabriela Kalna,et al.  Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase , 2011, Nature.

[59]  E. Ruppin,et al.  Predicting selective drug targets in cancer through metabolic networks , 2011, Molecular systems biology.

[60]  P. Sutphin,et al.  Targeting GLUT1 and the Warburg Effect in Renal Cell Carcinoma by Chemical Synthetic Lethality , 2011, Science Translational Medicine.

[61]  H. Lehrach,et al.  No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis , 2011, Oncotarget.

[62]  L. Cantley,et al.  Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. , 2011, Molecular cell.

[63]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[64]  Joydeep Mukherjee,et al.  Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme , 2011, The Journal of experimental medicine.

[65]  Masayuki Kano,et al.  miR‐145, miR‐133a and miR‐133b: Tumor‐suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma , 2010, International journal of cancer.

[66]  B. Kefas,et al.  Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. , 2010, Neuro-oncology.

[67]  P. Pandolfi,et al.  A coding-independent function of gene and pseudogene mRNAs regulates tumour biology , 2010, Nature.

[68]  Jun S. Song,et al.  Negative regulation of tumor suppressor p53 by microRNA miR-504. , 2010, Molecular cell.

[69]  E. Gottlieb,et al.  Targeting metabolic transformation for cancer therapy , 2010, Nature Reviews Cancer.

[70]  Sun-Mi Park,et al.  The role of let-7 in cell differentiation and cancer. , 2010, Endocrine-related cancer.

[71]  George M Yousef,et al.  The miR-17-92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. , 2010, The Journal of urology.

[72]  G. Mills,et al.  miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-α in human breast cancer cells , 2010, Cell Death and Differentiation.

[73]  G. Semenza,et al.  Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression , 2010, Proceedings of the National Academy of Sciences.

[74]  C. Dang,et al.  MYC-Induced Cancer Cell Energy Metabolism and Therapeutic Opportunities , 2009, Clinical Cancer Research.

[75]  Maria C. Mitterberger,et al.  Pyruvate kinase isoenzyme M2 is a glycolytic sensor differentially regulating cell proliferation, cell size and apoptotic cell death dependent on glucose supply. , 2009, Experimental cell research.

[76]  C. Croce Causes and consequences of microRNA dysregulation in cancer , 2009, Nature Reviews Genetics.

[77]  George A Calin,et al.  MicroRNAs and cancer--new paradigms in molecular oncology. , 2009, Current opinion in cell biology.

[78]  Olivier Voinnet,et al.  The long and the short of noncoding RNAs. , 2009, Current opinion in cell biology.

[79]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[80]  C. Méndez-Vidal,et al.  Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. , 2009, Molecular cell.

[81]  D. Sabatini,et al.  Cancer Cell Metabolism: Warburg and Beyond , 2008, Cell.

[82]  N. Denko,et al.  Hypoxia, HIF1 and glucose metabolism in the solid tumour , 2008, Nature Reviews Cancer.

[83]  T. Wong,et al.  Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling , 2008, International journal of cancer.

[84]  Jing Zhao,et al.  Activation of p53 by MEG3 Non-coding RNA* , 2007, Journal of Biological Chemistry.

[85]  S. Fulda,et al.  Role of hypoxia inducible factor-1 alpha in modulation of apoptosis resistance , 2007, Oncogene.

[86]  Meng Li,et al.  Rapid Identification of UCA1 as a Very Sensitive and Specific Unique Marker for Human Bladder Carcinoma , 2006, Clinical Cancer Research.

[87]  Oksana Gavrilova,et al.  p53 Regulates Mitochondrial Respiration , 2006, Science.

[88]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[89]  David Beach,et al.  Glycolytic enzymes can modulate cellular life span. , 2005, Cancer research.

[90]  M. Hayashi,et al.  Induction of glucose transporter 1 expression through hypoxia-inducible factor 1alpha under hypoxic conditions in trophoblast-derived cells. , 2004, The Journal of endocrinology.

[91]  D. Danila,et al.  A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. , 2003, The Journal of clinical endocrinology and metabolism.

[92]  H. Lodish,et al.  Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. , 2002, American journal of physiology. Endocrinology and metabolism.

[93]  R K Jain,et al.  Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. , 2001, Cancer research.

[94]  P. Ratcliffe,et al.  Activation of the HIF pathway in cancer. , 2001, Current opinion in genetics & development.

[95]  N. Cascinelli,et al.  Axillary lymph node staging in breast cancer by 2-fluoro-2-deoxy-D-glucose-positron emission tomography: clinical evaluation and alternative management. , 2001, Journal of the National Cancer Institute.

[96]  M. Schwaiger,et al.  Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. , 2000, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[97]  L. Cantley,et al.  New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[98]  M. Gassmann,et al.  Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. , 1998, Genes & development.

[99]  P. Cohen,et al.  Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα , 1997, Current Biology.

[100]  Frank D. Gray,et al.  Hypoxia , 1964, The Yale Journal of Biology and Medicine.

[101]  O. Warburg [Origin of cancer cells]. , 1956, Oncologia.

[102]  O. Warburg,et al.  THE METABOLISM OF TUMORS IN THE BODY , 1927, The Journal of general physiology.

[103]  C. Cori,et al.  THE CARBOHYDRATE METABOLISM OF TUMORS I. THE FREE SUGAR, LACTIC ACID, AND GLYCOGEN CONTENT OF MALIGNANT TUMORS , 1925 .

[104]  Hui Chen,et al.  MicroRNA-181b inhibits glycolysis in gastric cancer cells via targeting hexokinase 2 gene. , 2016, Cancer biomarkers : section A of Disease markers.

[105]  Lewis C Cantley,et al.  Metabolic Reprogramming by the PI3K-Akt-mTOR Pathway in Cancer. , 2016, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer.

[106]  C. Méndez-Vidal,et al.  Wrap53, a Natural p53 Antisense Transcript Required for p53 Induction upon DNA Damage. , 2016, Molecular cell.

[107]  Ming Liu,et al.  Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. , 2013, The American journal of pathology.

[108]  Christian M. Metallo,et al.  Metabolic pathway alterations that support cell proliferation. , 2011, Cold Spring Harbor symposia on quantitative biology.

[109]  R. Deberardinis,et al.  The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. , 2008, Cell metabolism.

[110]  C. Cori,et al.  THE CARBOHYDRATE METABOLISM OF TUMORS , 2003 .

[111]  H. Ryan,et al.  HIF-1 alpha is required for solid tumor formation and embryonic vascularization. , 1998, The EMBO journal.