Exciton antennas and concentrators from core-shell and corrugated carbon nanotube filaments of homogeneous composition.

There has been renewed interest in solar concentrators and optical antennas for improvements in photovoltaic energy harvesting and new optoelectronic devices. In this work, we dielectrophoretically assemble single-walled carbon nanotubes (SWNTs) of homogeneous composition into aligned filaments that can exchange excitation energy, concentrating it to the centre of core-shell structures with radial gradients in the optical bandgap. We find an unusually sharp, reversible decay in photoemission that occurs as such filaments are cycled from ambient temperature to only 357 K, attributed to the strongly temperature-dependent second-order Auger process. Core-shell structures consisting of annular shells of mostly (6,5) SWNTs (E(g)=1.21 eV) and cores with bandgaps smaller than those of the shell (E(g)=1.17 eV (7,5)-0.98 eV (8,7)) demonstrate the concentration concept: broadband absorption in the ultraviolet-near-infrared wavelength regime provides quasi-singular photoemission at the (8,7) SWNTs. This approach demonstrates the potential of specifically designed collections of nanotubes to manipulate and concentrate excitons in unique ways.

[1]  James Hone,et al.  Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy. , 2006, Physical review letters.

[2]  Garry Rumbles,et al.  Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode , 2006 .

[3]  William W. Parson,et al.  Light-Harvesting Antennas in Photosynthesis , 2003, Advances in Photosynthesis and Respiration.

[4]  Markus J. Buehler,et al.  Mesoscale modeling of mechanics of carbon nanotubes: Self-assembly, self-folding, and fracture , 2006 .

[5]  W. I. Milne,et al.  Carbon nanotubes for ultrafast photonics , 2007 .

[6]  M. Shim,et al.  Performance and photovoltaic response of polymer-doped carbon nanotube p-n diodes. , 2008, ACS nano.

[7]  T. Savenije,et al.  Singlet and Triplet Exciton Diffusion in a Self‐Organizing Porphyrin Antenna Layer , 2004 .

[8]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[9]  Otto Zhou,et al.  Assembly of 1D Nanostructures into Sub‐micrometer Diameter Fibrils with Controlled and Variable Length by Dielectrophoresis , 2003 .

[10]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[11]  T. Főrster,et al.  10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation , 1959 .

[12]  S. Boxer,et al.  Large protein-induced dipoles for a symmetric carotenoid in a photosynthetic antenna complex. , 1991, Science.

[13]  C. Voisin,et al.  Ultrafast carrier dynamics in single-wall carbon nanotubes. , 2003, Physical review letters.

[14]  R. Hatakeyama,et al.  Exciton energy transfer-assisted photoluminescence brightening from freestanding single-walled carbon nanotube bundles. , 2008, Journal of the American Chemical Society.

[15]  John A Rogers,et al.  Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. , 2008, Nature materials.

[16]  Timothy D Heidel,et al.  High-Efficiency Organic Solar Concentrators for Photovoltaics , 2008, Science.

[17]  Zhonghua Yu,et al.  Rayleigh and Raman Scattering from Individual Carbon Nanotube Bundles , 2001 .

[18]  Christoph Lienau,et al.  Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes. , 2005, Physical review letters.

[19]  Jacques Lefebvre,et al.  Photoluminescence and Förster Resonance Energy Transfer in Elemental Bundles of Single-Walled Carbon Nanotubes , 2009 .

[20]  Tim H. Taminiau,et al.  Optical antennas direct single-molecule emission , 2008 .

[21]  Phaedon Avouris,et al.  Radiative lifetime of excitons in carbon nanotubes. , 2005, Nano letters.

[22]  M. Trautz,et al.  Das Gesetz der Reaktionsgeschwindigkeit und der Gleichgewichte in Gasen. Bestätigung der Additivität von Cv‐3/2R. Neue Bestimmung der Integrationskonstanten und der Moleküldurchmesser , 1916 .

[23]  Sergey Vyazovkin,et al.  Kinetic concepts of thermally stimulated reactions in solids: A view from a historical perspective , 2000 .

[24]  K. Kojima,et al.  Thermal relaxation kinetics of defects in single-wall carbon nanotubes , 2007 .

[25]  J. Barber,et al.  Oxyphotobacteria: Antenna ring around photosystem I , 2001, Nature.

[26]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[27]  Gordana Dukovic,et al.  Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. , 2004, Physical review letters.

[28]  G. Lanzani,et al.  Intersubband exciton relaxation dynamics in single-walled carbon nanotubes. , 2005, Physical review letters.

[29]  Tobias Hertel,et al.  Charge-carrier dynamics in single-wall carbon nanotube bundles: a time-domain study , 2002 .

[30]  M. Strano,et al.  Covalent Functionalization of Single-Walled Carbon Nanotubes Alters Their Densities Allowing Electronic and Other Types of Separation , 2008 .

[31]  Lukas Novotny,et al.  Exciton energy transfer in pairs of single-walled carbon nanotubes. , 2008, Nano letters.

[32]  W. Milne,et al.  Photoluminescence spectroscopy of carbon nanotube bundles: evidence for exciton energy transfer. , 2007, Physical review letters.

[33]  Thomas Taubner,et al.  Optical antenna thermal emitters , 2009 .

[34]  L. Novotný,et al.  Exciton transfer and propagation in carbon nanotubes studied by near‐field optical microscopy , 2008 .