Mesoporous TiO₂ spheres interconnected by multiwalled carbon nanotubes as an anode for high-performance lithium ion batteries.

We report on the excellent electrochemical response of lithium ion batteries that use a composite material comprised of mesoporous titanium dioxide (MTO) spheres and multiwalled carbon nanotubes (MWCNTs) for the anode. The composite structure was synthesized via a combined sol-gel and solvothermal method, and the batteries exhibited unprecedented discharge capacity, cycling stability, and reversibility when compared to those based on commercially available TiO2 nanopowders and mesoporous TiO2 spheres. The inclusion of the composite structure resulted in an improvement in electronic and ionic conductivity, a larger surface area, and a colossal number of open channels in the synthesized structure that allowed for lithium ion intercalation. We achieved a Coulombic efficiency of nearly 100% and a discharge capacity as high as 316 mA h g(-1) at a rate of C/5, which is 1.9 times higher than that which is practically attainable with TiO2. Moreover, we observed a capacity loss of only 3.1% after 100 cycles, which indicates that the synthesized structure has a highly stable nature.

[1]  Zhen He,et al.  TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells , 2013 .

[2]  Ping Wu,et al.  A graphene-amorphous FePO4 hollow nanosphere hybrid as a cathode material for lithium ion batteries. , 2012, Chemical communications.

[3]  G. Cao,et al.  Design and Tailoring of a Three-Dimensional TiO2–Graphene–Carbon Nanotube Nanocomposite for Fast Lithium Storage , 2011 .

[4]  Yong‐Mook Kang,et al.  Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. , 2011, Journal of the American Chemical Society.

[5]  J. Chen,et al.  One‐Dimensional Hierarchical Structures Composed of Novel Metal Oxide Nanosheets on a Carbon Nanotube Backbone and Their Lithium‐Storage Properties , 2011 .

[6]  Xiao‐Guang Sun,et al.  Mesoporous TiO2–B Microspheres with Superior Rate Performance for Lithium Ion Batteries , 2011, Advanced materials.

[7]  D. Aurbach,et al.  A review of advanced and practical lithium battery materials , 2011 .

[8]  Young‐Jun Kim,et al.  Preparation of carbon-coated TiO2 nanostructures for lithium-ion batteries , 2011 .

[9]  Young‐Jun Kim,et al.  Synthesis of carbon-coated TiO 2 nanotubes for high-power lithium-ion batteries , 2011 .

[10]  Feng Li,et al.  Battery Performance and Photocatalytic Activity of Mesoporous Anatase TiO2 Nanospheres/Graphene Composites by Template‐Free Self‐Assembly , 2011 .

[11]  X. Lou,et al.  Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities. , 2011, Nanoscale.

[12]  X. Lou,et al.  Graphene-supported anatase TiO2 nanosheets for fast lithium storage. , 2011, Chemical communications.

[13]  P. Balaya,et al.  Mesoporous TiO2 with high packing density for superior lithium storage , 2010 .

[14]  Yi Cui,et al.  Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. , 2010, ACS nano.

[15]  Chang Ming Li,et al.  Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. , 2010, Journal of the American Chemical Society.

[16]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[17]  S. Das,et al.  High lithium storage in micrometre sized mesoporous spherical self-assembly of anatase titania nanospheres and carbon , 2010 .

[18]  D. Eder Carbon nanotube-inorganic hybrids. , 2010, Chemical reviews.

[19]  J. Elliott,et al.  Role of Benzyl Alcohol in Controlling the Growth of TiO2 on Carbon Nanotubes , 2010 .

[20]  Li-Jun Wan,et al.  Symbiotic Coaxial Nanocables: Facile Synthesis and an Efficient and Elegant Morphological Solution to the Lithium Storage Problem , 2010 .

[21]  X. Lou,et al.  Anatase TiO2 nanosheet : an ideal host structure for fast and efficient lithium insertion/extraction , 2009 .

[22]  Z. Su,et al.  Syntheses, Li Insertion, and Photoactivity of Mesoporous Crystalline TiO2 , 2009 .

[23]  Chi-Young Lee,et al.  Detecting HER2 on cancer cells by TiO2 spheres Mie scattering. , 2009, Analytical chemistry.

[24]  Min Gyu Kim,et al.  Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries , 2009 .

[25]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .

[26]  Ji‐Guang Zhang,et al.  Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. , 2009, ACS nano.

[27]  A. Windle,et al.  Carbon–Inorganic Hybrid Materials: The Carbon‐Nanotube/TiO2 Interface , 2008 .

[28]  A. Windle,et al.  Morphology control of CNT-TiO2 hybrid materials and rutile nanotubes , 2008 .

[29]  Justin D. Holmes,et al.  Mesoporous Titania Nanotubes: Their Preparation and Application as Electrode Materials for Rechargeable Lithium Batteries , 2007 .

[30]  Yu-Guo Guo,et al.  Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks , 2007 .

[31]  Haoshen Zhou,et al.  Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode , 2007 .

[32]  Yu‐Guo Guo,et al.  Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. , 2006, Chemical communications.

[33]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[34]  N. Nakashima,et al.  A Mesoporous Nanocomposite of TiO2 and Carbon Nanotubes as a High‐Rate Li‐Intercalation Electrode Material , 2006 .

[35]  G. Cao,et al.  Electrochemical performance of CoSb3/MWNTs nanocomposite prepared by in situ solvothermal synthesis , 2005 .

[36]  J. Tarascon,et al.  Electrochemical lithium reactivity with nanotextured anatase-type TiO2 , 2005 .

[37]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[38]  M. Wagemaker,et al.  Two phase morphology limits lithium diffusion in TiO(2)(anatase): a (7)Li MAS NMR study. , 2001, Journal of the American Chemical Society.

[39]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films , 1997 .

[40]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[41]  Bing Huang,et al.  Design and synthesis of high-rate micron-sized, spherical LiFePO4/C composites containing clusters of nano/microspheres , 2010 .

[42]  W. K. Zhang,et al.  Electrochemical investigation of TiO2/carbon nanotubes nanocomposite as anode materials for lithium-ion batteries , 2007 .

[43]  G. Nuspl,et al.  Lithium intercalation in TiO2 modifications , 1997 .