Some results of error evaluation for a non-Gaussian simulation method

In a first part of the paper a simulation method for a strictly stationary non-Gaussian process with given one-dimensional marginal distribution (or N-first statistical moments) and autocorrelation function is recalled. This method was already widely treated in the articles [14] and [13]. The objective of the present paper is twofold: first, to simplify this method - if by Mehler formula it is possible to find an autocorrelation function yielding the target autocorrelation function, and second, analyze the difference between the given autocorrelation function and the model one.

[1]  A. Kareem,et al.  SIMULATION OF A CLASS OF NON-NORMAL RANDOM PROCESSES , 1996 .

[2]  G. Schuëller A state-of-the-art report on computational stochastic mechanics , 1997 .

[3]  M. Shinozuka,et al.  Digital Generation of Non‐Gaussian Stochastic Fields , 1988 .

[4]  M. Grigoriu Simulation of stationary non-Gaussian translation processes , 1998 .

[5]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[6]  Bénédicte Puig,et al.  Non-Gaussian simulation using Hermite polynomials expansion and maximum entropy principle , 2004 .

[7]  Christian Soize,et al.  Mathematics of random phenomena , 1986 .

[8]  Roger Ghanem,et al.  Simulation of multi-dimensional non-gaussian non-stationary random fields , 2002 .

[9]  George Deodatis,et al.  Simulation of homogeneous nonGaussian stochastic vector fields , 1998 .

[10]  M. Shinozuka,et al.  Simulation of Stochastic Processes by Spectral Representation , 1991 .

[11]  A. Nienow Hydrodynamics of Stirred Bioreactors , 1998 .

[12]  P. Spanos,et al.  Monte Carlo Treatment of Random Fields: A Broad Perspective , 1998 .

[13]  Christian Soize,et al.  Numerical methods and mathematical aspects for simulation of homogeneous and non homogeneous gaussian vector fields , 1995 .

[14]  K. Gurley,et al.  Simulation of non-gaussian processes , 1998 .

[15]  Christian Soize,et al.  Non-Gaussian simulation using Hermite polynomial expansion: convergences and algorithms , 2002 .

[16]  F. Poirion Numerical Simulation Of Homogeneous Non-Gaussian Random Vector Fields , 1993 .

[17]  B. Nageswara Rao,et al.  Reinvestigation Of Non-linear Vibrations Of Simply Supported Rectangular Cross-ply Plates , 1993 .