Explanatory Reasoning for Image Understanding Using Formal Concept Analysis and Description Logics

In this paper, we propose an original way of enriching description logics with abduction reasoning services. Under the aegis of set and lattice theories, we put together ingredients from mathematical morphology, description logics, and formal concept analysis. We propose computing the best explanations of an observation through algebraic erosion over the concept lattice of a background theory that is efficiently constructed using tools from formal concept analysis. We show that the defined operators are sound and complete and satisfy important rationality postulates of abductive reasoning. As a typical illustration, we consider a scene understanding problem. In fact, scene understanding can benefit from prior structural knowledge represented as an ontology and the reasoning tools of description logics. We formulate model based scene understanding as an abductive reasoning process. A scene is viewed as an observation and the interpretation is defined as the best explanation, considering the terminological knowledge part of a description logic about the scene context. This explanation is obtained from morphological operators applied on the corresponding concept lattice.

[1]  Franz Baader,et al.  Exploring Finite Models in the Description Logic , 2009, ICFCA.

[2]  Carlos Uzcátegui,et al.  Jumping to Explanations versus Jumping to Conclusions , 1999, Artificial Intelligence.

[3]  Isabelle Bloch,et al.  Integrating Bipolar Fuzzy Mathematical Morphology in Description Logics for Spatial Reasoning , 2010, ECAI.

[4]  Isabelle Bloch,et al.  Abduction in Description Logics using Formal Concept Analysis and Mathematical Morphology: Application to Image Interpretation , 2011, CLA.

[5]  Alia I. Abdelmoty,et al.  Semantics, ontologies and eScience for the geosciences , 2009, Comput. Geosci..

[6]  Ulrike Sattler,et al.  A Case for Abductive Reasoning over Ontologies , 2006, OWLED.

[7]  Stefan Schlobach,et al.  ABox Abduction in the Description Logic ALC , 2011, J. Autom. Reason..

[8]  Georg Gottlob,et al.  The Complexity of Logic-Based Abduction , 1993, STACS.

[9]  Meghyn Bienvenu,et al.  Complexity of Abduction in the EL Family of Lightweight Description Logics , 2008, KR.

[10]  Stéphane Herbin,et al.  Semantic hierarchies for image annotation: A survey , 2012, Pattern Recognit..

[11]  Francesco M. Donini,et al.  A Uniform Tableaux-Based Approach to Concept Abduction and Contraction in ALN , 2004, Description Logics.

[12]  Isabelle Bloch,et al.  Sequential model-based segmentation and recognition of image structures driven by visual features and spatial relations , 2012, Comput. Vis. Image Underst..

[13]  Bernhard Ganter,et al.  Completing Description Logic Knowledge Bases Using Formal Concept Analysis , 2007, IJCAI.

[14]  Amedeo Napoli,et al.  A Proposal for Combining Formal Concept Analysis and Description Logics for Mining Relational Data , 2007, ICFCA.

[15]  Anthony G. Cohn,et al.  Cognitive Vision: Integrating Symbolic Qualitative Representations with Computer Vision , 2006, Cognitive Vision Systems.

[16]  Bernd Neumann,et al.  Ontology-Based Reasoning Techniques for Multimedia Interpretation and Retrieval , 2008 .

[17]  Steffen Staab,et al.  An Ontology Infrastructure for Multimedia Reasoning , 2005, VLBV.

[18]  Isabelle Bloch,et al.  3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models , 2009, Fuzzy Sets Syst..

[19]  Thomas R. Gruber,et al.  Toward principles for the design of ontologies used for knowledge sharing? , 1995, Int. J. Hum. Comput. Stud..

[20]  Domenico M. Pisanelli,et al.  Ontologies in Medicine , 2004 .

[21]  Isabelle Bloch,et al.  Fuzzy spatial relation ontology for image interpretation , 2008, Fuzzy Sets Syst..

[22]  H. Heijmans Morphological image operators , 1994 .

[23]  Jérôme Lang,et al.  Towards mathematical morpho-logics , 2002 .

[24]  Isabelle Bloch,et al.  A Unified Treatment for Knowledge Dynamics , 2004, KR.

[25]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[26]  Vincent Duquenne,et al.  Familles minimales d'implications informatives résultant d'un tableau de données binaires , 1986 .

[27]  F. Baader Computing a Minimal Representation of the Subsumption Lattice of All Conjunctions of Concepts De ned in a Terminology ? , 1995 .

[28]  Yves Chiaramella,et al.  A Model for Multimedia Information Retrieval , 1996 .

[29]  CARLO MEGHINI,et al.  A model of multimedia information retrieval , 2001, JACM.

[30]  Sebastian Rudolph,et al.  Exploring Relational Structures Via FLE , 2004, ICCS.

[31]  Yiannis Kompatsiaris,et al.  Semantic Multimedia and Ontologies , 2008 .

[32]  R. Möller,et al.  Multimedia Interpretation as Abduction , 2007 .

[33]  Stefan Schlobach,et al.  ABox Abduction in the Description Logic $\boldsymbol{\mathcal{ALC}}$ , 2010, Journal of Automated Reasoning.

[34]  Felix Distel Model-Based Most Specific Concepts in Some Inexpressive Description Logics , 2009, Description Logics.

[35]  Céline Hudelot,et al.  Towards ontologies for image interpretation and annotation , 2011, 2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI).

[36]  Michael G. Strintzis,et al.  Investigating fuzzy DLs-based reasoning in semantic image analysis , 2010, Multimedia Tools and Applications.

[37]  Cordelia Schmid,et al.  Semantic Hierarchies for Visual Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Isabelle Bloch,et al.  Explanatory Relations Based on Mathematical Morphology , 2001, ECSQARU.

[39]  Richard Lepage,et al.  Knowledge-Based Image Understanding Systems: A Survey , 1997, Comput. Vis. Image Underst..

[40]  Fakultat Informatik,et al.  Formal Concept Analysis Methods for Description Logics , 2008 .

[41]  H. Heijmans,et al.  The algebraic basis of mathematical morphology , 1988 .

[42]  Felix Distel,et al.  Mining of EL-GCIs , 2011, 2011 IEEE 11th International Conference on Data Mining Workshops.

[43]  Gerd Stumme,et al.  Theory-driven Logical Scaling: Conceptual Information Systems meet Description Logics , 1999, KRDB.

[44]  Isabelle Bloch,et al.  A constraint propagation approach to structural model based image segmentation and recognition , 2013, Inf. Sci..

[45]  Frank van Harmelen,et al.  Debugging Incoherent Terminologies , 2007, Journal of Automated Reasoning.

[46]  Umberto Straccia,et al.  Towards spatial reasoning in fuzzy description logics , 2009, 2009 IEEE International Conference on Fuzzy Systems.

[47]  Felix Distel An Approach to Exploring Description Logic Knowledge Bases , 2010, ICFCA.

[48]  Henk J. A. M. Heijmans,et al.  The algebraic basis of mathematical morphology. I Dilations and erosions , 1990, Comput. Vis. Graph. Image Process..

[49]  Yiannis Kompatsiaris,et al.  Semantic Multimedia and Ontologies: Theory and Applications , 2008 .

[50]  M. Thonnat Knowledge-based techniques for image processing and for image understanding , 2002 .

[51]  Pierre Zweigenbaum,et al.  Issues in the Structuring and Acquisition of an Ontology for Medical Language Understanding , 1995, Methods of Information in Medicine.

[52]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[54]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[55]  Isabelle Bloch,et al.  Mathematical Morphology , 2007, Handbook of Spatial Logics.

[56]  Boris Motik,et al.  Hypertableau Reasoning for Description Logics , 2009, J. Artif. Intell. Res..

[57]  Felix Distel,et al.  On the complexity of enumerating pseudo-intents , 2011, Discret. Appl. Math..

[58]  Bijan Parsia,et al.  Explaining Inconsistencies in OWL Ontologies , 2009, SUM.

[59]  Isabelle Bloch,et al.  Structure segmentation and recognition in images guided by structural constraint propagation , 2008, ECAI.

[60]  Michael G. Strintzis,et al.  Using Fuzzy DLs to Enhance Semantic Image Analysis , 2008, SAMT.

[61]  Céline Hudelot Towards a Cognitive Vision Platform for Semantic Image Interpretation; Application to the Recognition of Biological Organisms , 2005 .

[62]  Bijan Parsia,et al.  Finding All Justifications of OWL DL Entailments , 2007, ISWC/ASWC.

[63]  Dan A. Simovici Betweenness, Metrics and Entropies in Lattices , 2008, 38th International Symposium on Multiple Valued Logic (ismvl 2008).

[64]  Jianping Fan,et al.  Integrating Concept Ontology and Multitask Learning to Achieve More Effective Classifier Training for Multilevel Image Annotation , 2008, IEEE Transactions on Image Processing.