Natural optical design concepts for highly miniaturized camera systems

Microcameras for computers, mobile phones, watches, security system and credit cards is a very promising future market. Semiconductor industry is now able to integrate light reception, signal amplification and processing in a low- power-consuming microchip of a few mm2 size. Active pixel sensors supply each pixel in an image sensor with an individually programmable functionality. Beside the electronic receptor chip, a highly miniaturized lens system is required. Compared to the progress in microelectronics, optics has not yet made a significant step. Today's microcamera lenses are usually a downscaled version of a classical lens system and rarely smaller than 3 mm X 3 mm X 3 mm. This lagging of optics is quite surprising. Biologists have systematically studied all types of natural eye sensors since the 18th Century. Mother Nature provides a variety of highly effective examples for miniaturized imaging system. Single-aperture systems are the appropriate solution if the size is a free design parameter. If the budget is tight and optics limited to size, nature prefers multiple-aperture systems, the so-called compound eyes. As compound eyes are limited in resolution and night view, a cluster of single-aperture eyes, as jumping spiders use, is probably a better solution. The recent development in micro- optics offers the chance to imitate such natural design concepts. We have investigated miniaturized imaging systems based on microlens array and natural optical design concepts. Practical limitations for system design, packaging and assembling are given. Examples for micro-optical components and imaging systems are presented.