Axial-vector transition form factors and e+e− → f1π+π−
暂无分享,去创建一个
[1] M. Hoferichter,et al. A phenomenological estimate of isospin breaking in hadronic vacuum polarization , 2023, 2307.02532.
[2] M. Hoferichter,et al. Isospin-breaking effects in the three-pion contribution to hadronic vacuum polarization , 2023, Journal of High Energy Physics.
[3] M. Hayakawa,et al. Hadronic light-by-light contribution to the muon anomaly from lattice QCD with infinite volume QED at physical pion mass , 2023, 2304.04423.
[4] M. Procura,et al. Dispersion relations for hadronic light-by-light scattering in triangle kinematics , 2023, Journal of High Energy Physics.
[5] T. Izubuchi,et al. An update of Euclidean windows of the hadronic vacuum polarization , 2023, 2301.08696.
[6] C. DeTar,et al. Light-quark connected intermediate-window contributions to the muon g−2 hadronic vacuum polarization from lattice QCD , 2023, Physical Review D.
[7] J. Bijnens,et al. Constraints on the hadronic light-by-light in the Melnikov-Vainshtein regime , 2022, Journal of High Energy Physics.
[8] A. Rebhan,et al. Hadronic light-by-light contribution to the muon $g-2$ from holographic QCD with solved $U(1)_A$ problem , 2022, 2211.16562.
[9] M. Hoferichter,et al. Width effects of broad new resonances in loop observables and application to $(g-2)_\mu$ , 2022, 2211.12516.
[10] K. Jansen,et al. Lattice calculation of the short and intermediate time-distance hadronic vacuum polarization contributions to the muon magnetic moment using twisted-mass fermions , 2022, Physical Review D.
[11] A. Risch,et al. Window observable for the hadronic vacuum polarization contribution to the muon g−2 from lattice QCD , 2022, Physical Review D.
[12] T. Teubner,et al. Data-driven evaluations of Euclidean windows to scrutinize hadronic vacuum polarization , 2022, Physics Letters B.
[13] H. Meyer,et al. The charm-quark contribution to light-by-light scattering in the muon ( g - 2 ) from lattice QCD. , 2022, The European physical journal. C, Particles and fields.
[14] M. Hoferichter,et al. Kaon electromagnetic form factors in dispersion theory , 2022, The European Physical Journal C.
[15] C. Hanhart,et al. A dispersive analysis of $\eta'\to\pi^+\pi^-\gamma$ and $\eta'\to \ell^+\ell^-\gamma$ , 2022, 2202.05846.
[16] T. Teubner,et al. Mixed Leptonic and Hadronic Corrections to the Anomalous Magnetic Moment of the Muon. , 2021, Physical review letters.
[17] G. Colangelo,et al. Short-distance constraints for the longitudinal component of the hadronic light-by-light amplitude: an update , 2021, The European Physical Journal C.
[18] M. Hoferichter,et al. Improved Standard-Model Prediction for π^{0}→e^{+}e^{-}. , 2021, Physical review letters.
[19] M. Hoferichter,et al. A dispersive estimate of scalar contributions to hadronic light-by-light scattering , 2021, 2105.01666.
[20] F. Bedeschi,et al. Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab , 2021, Physical Review Accelerators and Beams.
[21] S. C. Kim,et al. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. , 2021, Physical review letters.
[22] F. Bedeschi,et al. Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g−2 Experiment , 2021, Physical Review D.
[23] F. Bedeschi,et al. Magnetic-field measurement and analysis for the Muon g−2 Experiment at Fermilab , 2021, Physical Review A.
[24] H. Meyer,et al. Hadronic light-by-light contribution to (g-2)μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g-2)_\mu $$\end{documen , 2021, The European Physical Journal C.
[25] M. Hoferichter,et al. On the transition form factors of the axial-vector resonance f1(1285) and its decay into e+e− , 2021, Journal of High Energy Physics.
[26] J. Bijnens,et al. The two-loop perturbative correction to the (g − 2)μ HLbL at short distances , 2021, Journal of High Energy Physics.
[27] J. Bijnens,et al. Short-distance HLbL contributions to the muon anomalous magnetic moment beyond perturbation theory , 2020, Journal of High Energy Physics.
[28] M. Hoferichter,et al. Hadronic vacuum polarization and vector-meson resonance parameters from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} , 2020, The European Physical Journal C.
[29] C. DeTar,et al. The anomalous magnetic moment of the muon in the Standard Model , 2020, Physics Reports.
[30] M. Procura,et al. Effects of longitudinal short-distance constraints on the hadronic light-by-light contribution to the muon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\odd , 2020, The European Physical Journal C.
[31] P. Roig,et al. The interplay of transverse degrees of freedom and axial-vector mesons with short-distance constraints in g−2 , 2020, Journal of Physics G: Nuclear and Particle Physics.
[32] M. Knecht. On some short-distance properties of the fourth-rank hadronic vacuum polarization tensor and the anomalous magnetic moment of the muon , 2020, Journal of High Energy Physics.
[33] M. Davier,et al. Erratum to: A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α(mZ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{u , 2020, The European Physical Journal C.
[34] M. Hoferichter,et al. Asymptotic behavior of meson transition form factors , 2020, Journal of High Energy Physics.
[35] T. Lippert,et al. Leading hadronic contribution to the muon magnetic moment from lattice QCD , 2020, Nature.
[36] Vladyslav Shtabovenko,et al. FeynCalc 9.3: New features and improvements , 2020, Comput. Phys. Commun..
[37] A. Rebhan,et al. Axial vector transition form factors in holographic QCD and their contribution to the anomalous magnetic moment of the muon , 2019, Physical Review D.
[38] G. Colangelo,et al. Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μ with large-Nc Regge models , 2019, Journal of High Energy Physics.
[39] G. Colangelo,et al. Short-distance constraints on hadronic light-by-light scattering in the anomalous magnetic moment of the muon , 2019, Physical Review D.
[40] Richard Williams,et al. Kaon-box contribution to the anomalous magnetic moment of the muon , 2019, Physical Review D.
[41] P. Roig,et al. Axial-vector exchange contribution to the hadronic light-by-light piece of the muon anomalous magnetic moment , 2019, Physical Review D.
[42] A. Rudenko,et al. Consistent analysis of f1(1285) meson form factors , 2019, Physics Letters B.
[43] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[44] J. Bijnens,et al. Short-distance constraints for the HLbL contribution to the muon anomalous magnetic moment , 2019, Physics Letters B.
[45] M. Hoferichter,et al. Three-pion contribution to hadronic vacuum polarization , 2019, Journal of High Energy Physics.
[46] Lucy Rosenbloom. arXiv , 2019, The Charleston Advisor.
[47] A. Bogdanchikov,et al. Search for direct production of the f1(1285) resonance in e+e− collisions , 2019, Physics Letters B.
[48] M. Hoferichter,et al. Dispersion relations for γ∗γ∗ → ππ: helicity amplitudes, subtractions, and anomalous thresholds , 2019, Journal of High Energy Physics.
[49] A. Nyffeler,et al. Lattice calculation of the pion transition form factor with Nf=2+1 Wilson quarks , 2019, Physical Review D.
[50] T. Kinoshita,et al. Theory of the Anomalous Magnetic Moment of the Electron , 2019, Atoms.
[51] M. Hoferichter,et al. Dispersion relation for hadronic light-by-light scattering: pion pole , 2018, Journal of High Energy Physics.
[52] G. Colangelo,et al. Two-pion contribution to hadronic vacuum polarization , 2018, Journal of High Energy Physics.
[53] M. Hoferichter,et al. Dispersion relation for hadronic light-by-light scattering: pion pole , 2018, Journal of High Energy Physics.
[54] S. Narison,et al. Scalar meson contributions to a from hadronic light-by-light scattering , 2018, Physics Letters B.
[55] M. Hoferichter,et al. Pion-Pole Contribution to Hadronic Light-By-Light Scattering in the Anomalous Magnetic Moment of the Muon. , 2018, Physical review letters.
[56] A. S. Nunes,et al. Light isovector resonances in π−p→π−π−π+p at 190 GeV/c , 2018, Physical Review D.
[57] M. Davier,et al. Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon $$g-2$$g-2 and $${\alpha (m_Z^2)}$$α(mZ2) using newest hadronic cross-section data , 2017, 1706.09436.
[58] A. S. Nunes,et al. Resonance Production and $ππ$ S-wave in $π^- + p → π^- π^- π^+ + p_{recoil}$ at 190 GeV/c , 2017 .
[59] G. Colangelo,et al. Rescattering Effects in the Hadronic-Light-by-Light Contribution to the Anomalous Magnetic Moment of the Muon. , 2017, Physical review letters.
[60] P. Masjuan,et al. Pseudoscalar-pole contribution to the $(g_{\mu}-2)$: a rational approach , 2017, 1701.05829.
[61] M. Vanderhaeghen,et al. Light-by-light scattering sum rules in light of new data , 2016, 1611.04646.
[62] G. Colangelo,et al. Dispersion relation for hadronic light-by-light scattering: two-pion contributions , 2016, 1702.07347.
[63] Ansgar Denner,et al. Collier: A fortran-based complex one-loop library in extended regularizations , 2016, Comput. Phys. Commun..
[64] R. Schumacher,et al. Photoproduction of the f 1 ( 1285 ) meson , 2016, 1604.07425.
[65] Frederik Orellana,et al. New developments in FeynCalc 9.0 , 2016, Comput. Phys. Commun..
[66] Peter Stoffer,et al. Dispersion relation for hadronic light-by-light scattering: theoretical foundations , 2015, 1506.01386.
[67] Peter Stoffer,et al. Towards a data-driven analysis of hadronic light-by-light scattering , 2014, 1408.2517.
[68] M. Hayakawa,et al. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD. , 2014, Physical review letters.
[69] A. Nyffeler,et al. Remarks on higher-order hadronic corrections to the muon g-2 , 2014, 1403.7512.
[70] M. Steinhauser,et al. Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order , 2014, 1403.6400.
[71] G. Colangelo,et al. Dispersive approach to hadronic light-by-light scattering , 2014, 1402.7081.
[72] V. Pauk,et al. Single meson contributions to the muon’s anomalous magnetic moment , 2014, 1401.0832.
[73] D. Stöckinger,et al. The electroweak contributions to $(g-2)_\mu$ after the Higgs boson mass measurement , 2013, 1306.5546.
[74] B. Moussallam. Unified dispersive approach to real and virtual photon-photon scattering at low energy , 2013, 1305.3143.
[75] M. Hayakawa,et al. Complete tenth-order QED contribution to the muon g-2. , 2012, Physical review letters.
[76] S. Pacetti,et al. Timelike and spacelike electromagnetic form factors of nucleons, a unified description , 2012, 1201.6126.
[77] R. Kaminski,et al. Precise determination of the f0(600) and f0(980) pole parameters from a dispersive data analysis. , 2011, Physical review letters.
[78] A. Denner,et al. Scalar one-loop 4-point integrals , 2010, 1005.2076.
[79] F. Jegerlehner. The Anomalous Magnetic Moment of the Muon , 2007 .
[80] C. Dionisi,et al. Study of resonance formation in the mass region 1400-1500 MeV through the reaction gamma gamma -> K-S(0) K-+/-pi(-/+) , 2007 .
[81] A. Denner,et al. Reduction schemes for one-loop tensor integrals , 2005, hep-ph/0509141.
[82] Thomas Hahn,et al. Cuba - a library for multidimensional numerical integration , 2004, Comput. Phys. Commun..
[83] A. Vainshtein,et al. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment reexamined , 2003, hep-ph/0312226.
[84] S. V. Laptev,et al. High-statistics study of the τ-→π-π0ντ decay , 2003, hep-ex/0312004.
[85] E. Sichtermann,et al. Muon g-2 , 2003, hep-ex/0309008.
[86] W. Marciano,et al. Refinements in electroweak contributions to the muon anomalous magnetic moment , 2002, hep-ph/0212229.
[87] C. Dionisi,et al. f1(1285) formation in two-photon collisions at LEP , 2002 .
[88] A. Semenov,et al. A measurement of the branching fractions of the f1(1285) and f1(1420) produced in central pp interactions at 450 GeV/c , 1998 .
[89] A. Semenov,et al. A study of the channel produced centrally in pp interactions at 450 GeV/c , 1997 .
[90] Ansgar Denner,et al. Feyn Calc―computer-algebraic calculation of Feynman amplitudes , 1991 .
[91] R. Zitoun,et al. Evidence for new states produced in the central region in the reaction pp→pf(π+π−π+π−)ps at 300 GeV/c , 1989 .
[92] R. Zitoun,et al. Study of the π+π+π-π- system centrally 0 produced by incident π+ andp beams at 85 GeV/c , 1989 .
[93] A. Barbaro-Galtieri,et al. F1 (1285) formation in photon photon fusion reactions , 1988 .
[94] Lu,et al. Formation of spin-one mesons by photon-photon fusion. , 1988, Physical review. D, Particles and fields.
[95] D. Amidei,et al. Observation of spin-1 f1(1285) in the reaction *0+ , 1987 .
[96] N. H. Lipman,et al. Observation of the D, E and δ mesons in π−p interactions at 12 and 15 GeV/c , 1978 .
[97] R. Tarrach. Invariant amplitudes for virtual compton scattering off polarized nucleons free from kinematical singularities, zeros and constraints , 1975 .
[98] C. Defoix,et al. Evidence for decays of the D- and e-mesons into σπ in p annihilation at 700 MeV/c , 1972 .
[99] C. Quigg,et al. Centrifugal-barrier effects in resonance partial decay widths, shapes, and production amplitudes , 1972 .
[100] W. Tung,et al. INVARIANT AMPLITUDES FOR PHOTON PROCESSES. , 1968 .
[101] C. Yang. Selection Rules for the Dematerialization of a Particle into Two Photons , 1950 .
[102] L. Landau. On the angular momentum of a system of two photons , 1948 .
[103] M. Davier,et al. A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α( m 2 Z ) , 2019 .
[104] M. Davier,et al. Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and α ( m 2 Z ) using newest hadronic cross-section data , 2018 .
[105] T. Teubner,et al. Muon g − 2 and α ð M 2 Z Þ : A new data-based analysis , 2018 .
[106] W. Marsden. I and J , 2012 .
[107] S. Pacetti. Time-like and space-like electromagnetic form factors of nucleons , a global description , 2012 .
[108] Wang Wen-Feng,et al. Precise measurement of the e+e− → π+π− (γ) cross section with the initial state radiation method at BABAR , 2010 .
[109] Erratum , 2005, Annals of Saudi Medicine.
[110] C. Dionisi,et al. Production and decay properties of the D(1285) meson in K−p interactions at 4.2 GeV/c , 1979 .
[111] Schalk,et al. Study of the Doubly Radiative Decay J/$ + Yyp " * , 2022 .
[112] and as an in , 2022 .