Axial-vector transition form factors and e+e− → f1π+π−

[1]  M. Hoferichter,et al.  A phenomenological estimate of isospin breaking in hadronic vacuum polarization , 2023, 2307.02532.

[2]  M. Hoferichter,et al.  Isospin-breaking effects in the three-pion contribution to hadronic vacuum polarization , 2023, Journal of High Energy Physics.

[3]  M. Hayakawa,et al.  Hadronic light-by-light contribution to the muon anomaly from lattice QCD with infinite volume QED at physical pion mass , 2023, 2304.04423.

[4]  M. Procura,et al.  Dispersion relations for hadronic light-by-light scattering in triangle kinematics , 2023, Journal of High Energy Physics.

[5]  T. Izubuchi,et al.  An update of Euclidean windows of the hadronic vacuum polarization , 2023, 2301.08696.

[6]  C. DeTar,et al.  Light-quark connected intermediate-window contributions to the muon g−2 hadronic vacuum polarization from lattice QCD , 2023, Physical Review D.

[7]  J. Bijnens,et al.  Constraints on the hadronic light-by-light in the Melnikov-Vainshtein regime , 2022, Journal of High Energy Physics.

[8]  A. Rebhan,et al.  Hadronic light-by-light contribution to the muon $g-2$ from holographic QCD with solved $U(1)_A$ problem , 2022, 2211.16562.

[9]  M. Hoferichter,et al.  Width effects of broad new resonances in loop observables and application to $(g-2)_\mu$ , 2022, 2211.12516.

[10]  K. Jansen,et al.  Lattice calculation of the short and intermediate time-distance hadronic vacuum polarization contributions to the muon magnetic moment using twisted-mass fermions , 2022, Physical Review D.

[11]  A. Risch,et al.  Window observable for the hadronic vacuum polarization contribution to the muon g−2 from lattice QCD , 2022, Physical Review D.

[12]  T. Teubner,et al.  Data-driven evaluations of Euclidean windows to scrutinize hadronic vacuum polarization , 2022, Physics Letters B.

[13]  H. Meyer,et al.  The charm-quark contribution to light-by-light scattering in the muon ( g - 2 ) from lattice QCD. , 2022, The European physical journal. C, Particles and fields.

[14]  M. Hoferichter,et al.  Kaon electromagnetic form factors in dispersion theory , 2022, The European Physical Journal C.

[15]  C. Hanhart,et al.  A dispersive analysis of $\eta'\to\pi^+\pi^-\gamma$ and $\eta'\to \ell^+\ell^-\gamma$ , 2022, 2202.05846.

[16]  T. Teubner,et al.  Mixed Leptonic and Hadronic Corrections to the Anomalous Magnetic Moment of the Muon. , 2021, Physical review letters.

[17]  G. Colangelo,et al.  Short-distance constraints for the longitudinal component of the hadronic light-by-light amplitude: an update , 2021, The European Physical Journal C.

[18]  M. Hoferichter,et al.  Improved Standard-Model Prediction for π^{0}→e^{+}e^{-}. , 2021, Physical review letters.

[19]  M. Hoferichter,et al.  A dispersive estimate of scalar contributions to hadronic light-by-light scattering , 2021, 2105.01666.

[20]  F. Bedeschi,et al.  Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab , 2021, Physical Review Accelerators and Beams.

[21]  S. C. Kim,et al.  Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. , 2021, Physical review letters.

[22]  F. Bedeschi,et al.  Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g−2 Experiment , 2021, Physical Review D.

[23]  F. Bedeschi,et al.  Magnetic-field measurement and analysis for the Muon g−2 Experiment at Fermilab , 2021, Physical Review A.

[24]  H. Meyer,et al.  Hadronic light-by-light contribution to (g-2)μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g-2)_\mu $$\end{documen , 2021, The European Physical Journal C.

[25]  M. Hoferichter,et al.  On the transition form factors of the axial-vector resonance f1(1285) and its decay into e+e− , 2021, Journal of High Energy Physics.

[26]  J. Bijnens,et al.  The two-loop perturbative correction to the (g − 2)μ HLbL at short distances , 2021, Journal of High Energy Physics.

[27]  J. Bijnens,et al.  Short-distance HLbL contributions to the muon anomalous magnetic moment beyond perturbation theory , 2020, Journal of High Energy Physics.

[28]  M. Hoferichter,et al.  Hadronic vacuum polarization and vector-meson resonance parameters from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} , 2020, The European Physical Journal C.

[29]  C. DeTar,et al.  The anomalous magnetic moment of the muon in the Standard Model , 2020, Physics Reports.

[30]  M. Procura,et al.  Effects of longitudinal short-distance constraints on the hadronic light-by-light contribution to the muon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\odd , 2020, The European Physical Journal C.

[31]  P. Roig,et al.  The interplay of transverse degrees of freedom and axial-vector mesons with short-distance constraints in g−2 , 2020, Journal of Physics G: Nuclear and Particle Physics.

[32]  M. Knecht On some short-distance properties of the fourth-rank hadronic vacuum polarization tensor and the anomalous magnetic moment of the muon , 2020, Journal of High Energy Physics.

[33]  M. Davier,et al.  Erratum to: A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α(mZ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{u , 2020, The European Physical Journal C.

[34]  M. Hoferichter,et al.  Asymptotic behavior of meson transition form factors , 2020, Journal of High Energy Physics.

[35]  T. Lippert,et al.  Leading hadronic contribution to the muon magnetic moment from lattice QCD , 2020, Nature.

[36]  Vladyslav Shtabovenko,et al.  FeynCalc 9.3: New features and improvements , 2020, Comput. Phys. Commun..

[37]  A. Rebhan,et al.  Axial vector transition form factors in holographic QCD and their contribution to the anomalous magnetic moment of the muon , 2019, Physical Review D.

[38]  G. Colangelo,et al.  Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μ with large-Nc Regge models , 2019, Journal of High Energy Physics.

[39]  G. Colangelo,et al.  Short-distance constraints on hadronic light-by-light scattering in the anomalous magnetic moment of the muon , 2019, Physical Review D.

[40]  Richard Williams,et al.  Kaon-box contribution to the anomalous magnetic moment of the muon , 2019, Physical Review D.

[41]  P. Roig,et al.  Axial-vector exchange contribution to the hadronic light-by-light piece of the muon anomalous magnetic moment , 2019, Physical Review D.

[42]  A. Rudenko,et al.  Consistent analysis of f1(1285) meson form factors , 2019, Physics Letters B.

[43]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[44]  J. Bijnens,et al.  Short-distance constraints for the HLbL contribution to the muon anomalous magnetic moment , 2019, Physics Letters B.

[45]  M. Hoferichter,et al.  Three-pion contribution to hadronic vacuum polarization , 2019, Journal of High Energy Physics.

[46]  Lucy Rosenbloom arXiv , 2019, The Charleston Advisor.

[47]  A. Bogdanchikov,et al.  Search for direct production of the f1(1285) resonance in e+e− collisions , 2019, Physics Letters B.

[48]  M. Hoferichter,et al.  Dispersion relations for γ∗γ∗ → ππ: helicity amplitudes, subtractions, and anomalous thresholds , 2019, Journal of High Energy Physics.

[49]  A. Nyffeler,et al.  Lattice calculation of the pion transition form factor with Nf=2+1 Wilson quarks , 2019, Physical Review D.

[50]  T. Kinoshita,et al.  Theory of the Anomalous Magnetic Moment of the Electron , 2019, Atoms.

[51]  M. Hoferichter,et al.  Dispersion relation for hadronic light-by-light scattering: pion pole , 2018, Journal of High Energy Physics.

[52]  G. Colangelo,et al.  Two-pion contribution to hadronic vacuum polarization , 2018, Journal of High Energy Physics.

[53]  M. Hoferichter,et al.  Dispersion relation for hadronic light-by-light scattering: pion pole , 2018, Journal of High Energy Physics.

[54]  S. Narison,et al.  Scalar meson contributions to a from hadronic light-by-light scattering , 2018, Physics Letters B.

[55]  M. Hoferichter,et al.  Pion-Pole Contribution to Hadronic Light-By-Light Scattering in the Anomalous Magnetic Moment of the Muon. , 2018, Physical review letters.

[56]  A. S. Nunes,et al.  Light isovector resonances in π−p→π−π−π+p at 190  GeV/c , 2018, Physical Review D.

[57]  M. Davier,et al.  Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon $$g-2$$g-2 and $${\alpha (m_Z^2)}$$α(mZ2) using newest hadronic cross-section data , 2017, 1706.09436.

[58]  A. S. Nunes,et al.  Resonance Production and $ππ$ S-wave in $π^- + p → π^- π^- π^+ + p_{recoil}$ at 190 GeV/c , 2017 .

[59]  G. Colangelo,et al.  Rescattering Effects in the Hadronic-Light-by-Light Contribution to the Anomalous Magnetic Moment of the Muon. , 2017, Physical review letters.

[60]  P. Masjuan,et al.  Pseudoscalar-pole contribution to the $(g_{\mu}-2)$: a rational approach , 2017, 1701.05829.

[61]  M. Vanderhaeghen,et al.  Light-by-light scattering sum rules in light of new data , 2016, 1611.04646.

[62]  G. Colangelo,et al.  Dispersion relation for hadronic light-by-light scattering: two-pion contributions , 2016, 1702.07347.

[63]  Ansgar Denner,et al.  Collier: A fortran-based complex one-loop library in extended regularizations , 2016, Comput. Phys. Commun..

[64]  R. Schumacher,et al.  Photoproduction of the f 1 ( 1285 ) meson , 2016, 1604.07425.

[65]  Frederik Orellana,et al.  New developments in FeynCalc 9.0 , 2016, Comput. Phys. Commun..

[66]  Peter Stoffer,et al.  Dispersion relation for hadronic light-by-light scattering: theoretical foundations , 2015, 1506.01386.

[67]  Peter Stoffer,et al.  Towards a data-driven analysis of hadronic light-by-light scattering , 2014, 1408.2517.

[68]  M. Hayakawa,et al.  Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD. , 2014, Physical review letters.

[69]  A. Nyffeler,et al.  Remarks on higher-order hadronic corrections to the muon g-2 , 2014, 1403.7512.

[70]  M. Steinhauser,et al.  Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order , 2014, 1403.6400.

[71]  G. Colangelo,et al.  Dispersive approach to hadronic light-by-light scattering , 2014, 1402.7081.

[72]  V. Pauk,et al.  Single meson contributions to the muon’s anomalous magnetic moment , 2014, 1401.0832.

[73]  D. Stöckinger,et al.  The electroweak contributions to $(g-2)_\mu$ after the Higgs boson mass measurement , 2013, 1306.5546.

[74]  B. Moussallam Unified dispersive approach to real and virtual photon-photon scattering at low energy , 2013, 1305.3143.

[75]  M. Hayakawa,et al.  Complete tenth-order QED contribution to the muon g-2. , 2012, Physical review letters.

[76]  S. Pacetti,et al.  Timelike and spacelike electromagnetic form factors of nucleons, a unified description , 2012, 1201.6126.

[77]  R. Kaminski,et al.  Precise determination of the f0(600) and f0(980) pole parameters from a dispersive data analysis. , 2011, Physical review letters.

[78]  A. Denner,et al.  Scalar one-loop 4-point integrals , 2010, 1005.2076.

[79]  F. Jegerlehner The Anomalous Magnetic Moment of the Muon , 2007 .

[80]  C. Dionisi,et al.  Study of resonance formation in the mass region 1400-1500 MeV through the reaction gamma gamma -> K-S(0) K-+/-pi(-/+) , 2007 .

[81]  A. Denner,et al.  Reduction schemes for one-loop tensor integrals , 2005, hep-ph/0509141.

[82]  Thomas Hahn,et al.  Cuba - a library for multidimensional numerical integration , 2004, Comput. Phys. Commun..

[83]  A. Vainshtein,et al.  Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment reexamined , 2003, hep-ph/0312226.

[84]  S. V. Laptev,et al.  High-statistics study of the τ-→π-π0ντ decay , 2003, hep-ex/0312004.

[85]  E. Sichtermann,et al.  Muon g-2 , 2003, hep-ex/0309008.

[86]  W. Marciano,et al.  Refinements in electroweak contributions to the muon anomalous magnetic moment , 2002, hep-ph/0212229.

[87]  C. Dionisi,et al.  f1(1285) formation in two-photon collisions at LEP , 2002 .

[88]  A. Semenov,et al.  A measurement of the branching fractions of the f1(1285) and f1(1420) produced in central pp interactions at 450 GeV/c , 1998 .

[89]  A. Semenov,et al.  A study of the channel produced centrally in pp interactions at 450 GeV/c , 1997 .

[90]  Ansgar Denner,et al.  Feyn Calc―computer-algebraic calculation of Feynman amplitudes , 1991 .

[91]  R. Zitoun,et al.  Evidence for new states produced in the central region in the reaction pp→pf(π+π−π+π−)ps at 300 GeV/c , 1989 .

[92]  R. Zitoun,et al.  Study of the π+π+π-π- system centrally 0 produced by incident π+ andp beams at 85 GeV/c , 1989 .

[93]  A. Barbaro-Galtieri,et al.  F1 (1285) formation in photon photon fusion reactions , 1988 .

[94]  Lu,et al.  Formation of spin-one mesons by photon-photon fusion. , 1988, Physical review. D, Particles and fields.

[95]  D. Amidei,et al.  Observation of spin-1 f1(1285) in the reaction *0+ , 1987 .

[96]  N. H. Lipman,et al.  Observation of the D, E and δ mesons in π−p interactions at 12 and 15 GeV/c , 1978 .

[97]  R. Tarrach Invariant amplitudes for virtual compton scattering off polarized nucleons free from kinematical singularities, zeros and constraints , 1975 .

[98]  C. Defoix,et al.  Evidence for decays of the D- and e-mesons into σπ in p annihilation at 700 MeV/c , 1972 .

[99]  C. Quigg,et al.  Centrifugal-barrier effects in resonance partial decay widths, shapes, and production amplitudes , 1972 .

[100]  W. Tung,et al.  INVARIANT AMPLITUDES FOR PHOTON PROCESSES. , 1968 .

[101]  C. Yang Selection Rules for the Dematerialization of a Particle into Two Photons , 1950 .

[102]  L. Landau On the angular momentum of a system of two photons , 1948 .

[103]  M. Davier,et al.  A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α( m 2 Z ) , 2019 .

[104]  M. Davier,et al.  Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and α ( m 2 Z ) using newest hadronic cross-section data , 2018 .

[105]  T. Teubner,et al.  Muon g − 2 and α ð M 2 Z Þ : A new data-based analysis , 2018 .

[106]  W. Marsden I and J , 2012 .

[107]  S. Pacetti Time-like and space-like electromagnetic form factors of nucleons , a global description , 2012 .

[108]  Wang Wen-Feng,et al.  Precise measurement of the e+e− → π+π− (γ) cross section with the initial state radiation method at BABAR , 2010 .

[109]  Erratum , 2005, Annals of Saudi Medicine.

[110]  C. Dionisi,et al.  Production and decay properties of the D(1285) meson in K−p interactions at 4.2 GeV/c , 1979 .

[111]  Schalk,et al.  Study of the Doubly Radiative Decay J/$ + Yyp " * , 2022 .

[112]  and as an in , 2022 .