The number of matchings in random graphs

We study matchings on sparse random graphs by means of the cavity method. We first show how the method reproduces several known results about maximum and perfect matchings in regular and Erd?s?R?nyi random graphs. Our main new result is the computation of the entropy, i.e.?the leading order of the logarithm of the number of solutions, of matchings with a given size. We derive both an algorithm to compute this entropy for an arbitrary graph with a girth that diverges in the large size limit, and an analytic result for the entropy in regular and Erd?s?R?nyi random graph ensembles.

[1]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .

[2]  Shimon Even,et al.  An O (N2.5) algorithm for maximum matching in general graphs , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[3]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[4]  G. Parisi A sequence of approximated solutions to the S-K model for spin glasses , 1980 .

[5]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[6]  M. Sipser,et al.  Maximum matching in sparse random graphs , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[7]  Richard M. Karp,et al.  Maximum Matchings in Sparse Random Graphs , 1981, FOCS 1981.

[8]  M. Mézard,et al.  Replicas and optimization , 1985 .

[9]  M. Mézard,et al.  A replica analysis of the travelling salesman problem , 1986 .

[10]  Brendan D. McKay,et al.  The number of matchings in random regular graphs and bipartite graphs , 1986, J. Comb. Theory, Ser. B.

[11]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[12]  A sequence of approximated solutions to the S-K model for spin glasses , 1987 .

[13]  A. Hasman,et al.  Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .

[14]  Mark Jerrum,et al.  The Markov chain Monte Carlo method: an approach to approximate counting and integration , 1996 .

[15]  Alan M. Frieze,et al.  Maximum matchings in sparse random graphs: Karp-Sipser revisited , 1998, Random Struct. Algorithms.

[16]  Rémi Monasson,et al.  THE EUROPEAN PHYSICAL JOURNAL B c○ EDP Sciences , 1999 .

[17]  Alexander K. Hartmann,et al.  The number of guards needed by a museum: A phase transition in vertex covering of random graphs , 2000, Physical review letters.

[18]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[19]  M. Mézard,et al.  The Bethe lattice spin glass revisited , 2000, cond-mat/0009418.

[20]  M. Bauer,et al.  Core percolation in random graphs: a critical phenomena analysis , 2001, cond-mat/0102011.

[21]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries , 2001, STOC '01.

[22]  D. Aldous The ζ(2) limit in the random assignment problem , 2000, Random Struct. Algorithms.

[23]  Riccardo Zecchina,et al.  Coloring random graphs , 2002, Physical review letters.

[24]  M. Mézard,et al.  Random K-satisfiability problem: from an analytic solution to an efficient algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Riccardo Zecchina,et al.  Alternative solutions to diluted p-spin models and XORSAT problems , 2002, ArXiv.

[26]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[27]  M. Mézard,et al.  The Cavity Method at Zero Temperature , 2002, cond-mat/0207121.

[28]  Michele Leone,et al.  Replica Bounds for Optimization Problems and Diluted Spin Systems , 2002 .

[29]  M. Talagrand,et al.  Spin Glasses: A Challenge for Mathematicians , 2003 .

[30]  William T. Freeman,et al.  Understanding belief propagation and its generalizations , 2003 .

[31]  A. Montanari,et al.  On the nature of the low-temperature phase in discontinuous mean-field spin glasses , 2003, cond-mat/0301591.

[32]  Haijun Zhou,et al.  Maximum matching on random graphs , 2003, cond-mat/0309348.

[33]  Gerhard Lakemeyer,et al.  Exploring artificial intelligence in the new millennium , 2003 .

[34]  Alan M. Frieze,et al.  Perfect matchings in random graphs with prescribed minimal degree , 2003, SODA '03.

[35]  S. Franz,et al.  Replica bounds for diluted non-Poissonian spin systems , 2003, cond-mat/0307367.

[36]  F. Guerra Broken Replica Symmetry Bounds in the Mean Field Spin Glass Model , 2002, cond-mat/0205123.

[37]  R. Monasson,et al.  Rigorous decimation-based construction of ground pure states for spin-glass models on random lattices. , 2002, Physical review letters.

[38]  M. Mézard,et al.  Glass models on Bethe lattices , 2003, cond-mat/0307569.

[39]  M. Mézard,et al.  Two Solutions to Diluted p-Spin Models and XORSAT Problems , 2003 .

[40]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[41]  David Gamarnik,et al.  Maximum Weight Independent Sets and Matchings in Sparse Random Graphs. Exact Results Using the Local Weak Convergence Method , 2004, APPROX-RANDOM.

[42]  Steve Chien A determinant-based algorithm for counting perfect matchings in a general graph , 2004, SODA '04.

[43]  M. Mézard,et al.  Random multi-index matching problems , 2005, cond-mat/0507180.

[44]  Devavrat Shah,et al.  Maximum weight matching via max-product belief propagation , 2005, ISIT.

[45]  Devavrat Shah,et al.  Maximum weight matching via max-product belief propagation , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[46]  Martin Fürer,et al.  Approximately Counting Perfect Matchings in General Graphs , 2005, ALENEX/ANALCO.

[47]  F. Krzakala,et al.  Spin glass models with ferromagnetically biased couplings on the Bethe lattice: analytic solutions and numerical simulations , 2004, cond-mat/0403053.

[48]  Guilhem Semerjian,et al.  An algorithm for counting circuits: application to real-world and random graphs , 2005, cond-mat/0507525.

[49]  Johan Wästlund AN EASY PROOF OF THE ζ ( 2 ) LIMIT IN THE RANDOM ASSIGNMENT PROBLEM , 2006 .

[50]  M. Weigt,et al.  Sudden emergence of q-regular subgraphs in random graphs , 2006, cond-mat/0603819.

[51]  David Gamarnik,et al.  Counting without sampling: new algorithms for enumeration problems using statistical physics , 2006, SODA '06.

[52]  A. B. Harris,et al.  Dimer statistics on a Bethe lattice. , 2004, The Journal of chemical physics.

[53]  Riccardo Zecchina,et al.  Threshold values of random K‐SAT from the cavity method , 2003, Random Struct. Algorithms.

[54]  E. Marinari,et al.  On the number of circuits in random graphs , 2006, cond-mat/0603657.