Three-dimensional vascular network projective reconstruction from uncalibrated and non-subtracted x-ray rotational angiography image sequence

X-ray rotational angiography has recently gained increasing interest for computer-assisted quantitative analysis. It provides more accurate assessment of vascular diseases and precise inspection of complex structure of the arterial network via three-dimensional (3D) vascular reconstruction. The 3D spatial information can be obtained via a stereoscopic analysis of the two-dimensional (2D) projections of the opacified blood vessels. In this work, we focus on the problem of automatic 3D reconstruction of blood vessel networks for telediagnostic applications and therefore from uncalibrated X-ray rotational angiography image sequence. Three main issues are addressed: 1) automatic accurate subpixel vascular median axis network detection from non-subtracted 2D angiography images, 2) robust matching of the extracted features by using an original method based on statistical tests, and 3) three-dimensional reconstruction through epipolar geometry determination from uncalibrated 2D images. Our reconstruction method has the advantage to be independent of the angiography acquisition system. It is therefore interesting for telemedicine and specially for telediagnostic systems.