Analysis of group evolution prediction in complex networks

In the world, in which acceptance and the identification with social communities are highly desired, the ability to predict the evolution of groups over time appears to be a vital but very complex research problem. Therefore, we propose a new, adaptable, generic, and multistage method for Group Evolution Prediction (GEP) in complex networks, that facilitates reasoning about the future states of the recently discovered groups. The precise GEP modularity enabled us to carry out extensive and versatile empirical studies on many real-world complex / social networks to analyze the impact of numerous setups and parameters like time window type and size, group detection method, evolution chain length, prediction models, etc. Additionally, many new predictive features reflecting the group state at a given time have been identified and tested. Some other research problems like enriching learning evolution chains with external data have been analyzed as well.

[1]  J. Maweu,et al.  Conceptual clarification , 2021, Managing Violent Religious Extremism in Fragile States.

[2]  Maciej Piasecki,et al.  WordNet2Vec: Corpora Agnostic Word Vectorization Method , 2016, Neurocomputing.

[3]  C. Vidal,et al.  STAT , 2019, Springer Reference Medizin.

[4]  Giulio Rossetti,et al.  Community Discovery in Dynamic Networks , 2017, ACM Comput. Surv..

[5]  Shengrui Wang,et al.  A Comparative Study of Different Approaches for Tracking Communities in Evolving Social Networks , 2017, 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[6]  M. Husnain,et al.  The Impact of Social Network Marketing on Consumer Purchase Intention in Pakistan: Consumer Engagement as a Mediator , 2017 .

[7]  A. Lauring,et al.  A novel twelve class fluctuation test reveals higher than expected mutation rates for influenza A viruses , 2017, eLife.

[8]  Licheng Jiao,et al.  A group evolving-based framework with perturbations for link prediction , 2017 .

[9]  Christopher. Simons,et al.  Machine learning with Python , 2017 .

[10]  Zheng Zheng,et al.  Evolution of Linux operating system network , 2017 .

[11]  Dimitrios Vogiatzis,et al.  Predicting the evolution of communities in social networks using structural and temporal features , 2017, 2017 12th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP).

[12]  Nagehan Ilhan,et al.  Feature identification for predicting community evolution in dynamic social networks , 2016, Eng. Appl. Artif. Intell..

[13]  I. Antoniadis,et al.  Social network analysis and social capital in marketing: theory and practical implementation , 2016 .

[14]  Mingli Zhang,et al.  Effects of Customers' Psychological Characteristics on Their Engagement Behavior in Company Social Networks , 2016 .

[15]  A. del Sol,et al.  Prediction of disease–gene–drug relationships following a differential network analysis , 2016, Cell Death and Disease.

[16]  Przemyslaw Kazienko,et al.  Predicting community evolution in social networks , 2015, 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[17]  Alex Alves Freitas,et al.  An Extensive Evaluation of Decision Tree–Based Hierarchical Multilabel Classification Methods and Performance Measures , 2015, Comput. Intell..

[18]  Ryan A. Rossi,et al.  The Network Data Repository with Interactive Graph Analytics and Visualization , 2015, AAAI.

[19]  Przemyslaw Kazienko,et al.  Community Evolution , 2016, Encyclopedia of Social Network Analysis and Mining.

[20]  Gerd Stumme,et al.  Formation and Temporal Evolution of Social Groups During Coffee Breaks , 2015, MSM/MUSE/SenseML.

[21]  Jon Rokne,et al.  Encyclopedia of Social Network Analysis and Mining , 2014, Springer New York.

[22]  Osmar R. Zaïane,et al.  Community evolution prediction in dynamic social networks , 2014, 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014).

[23]  Azhar Ahmad,et al.  Effects of Social Network Marketing ( SNM ) on Consumer Purchase Behavior through Customer Engagement , 2014 .

[24]  Nagehan Ilhan,et al.  Community Event Prediction in Dynamic Social Networks , 2013, 2013 12th International Conference on Machine Learning and Applications.

[25]  Albert-László Barabási,et al.  Universality in network dynamics , 2013, Nature Physics.

[26]  Przemyslaw Kazienko,et al.  Different approaches to community evolution prediction in blogosphere , 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013).

[27]  Przemyslaw Kazienko,et al.  Influence of the User Importance Measure on the Group Evolution Discovery , 2012, ArXiv.

[28]  Przemyslaw Kazienko,et al.  Predicting Group Evolution in the Social Network , 2012, SocInfo.

[29]  Malik Magdon-Ismail,et al.  Identifying Long Lived Social Communities Using Structural Properties , 2012, 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.

[30]  Przemyslaw Kazienko,et al.  Identification of Group Changes in Blogosphere , 2012, 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.

[31]  Przemyslaw Kazienko,et al.  Relational large scale multi-label classification method for video categorization , 2012, Multimedia Tools and Applications.

[32]  Przemyslaw Kazienko,et al.  GED: the method for group evolution discovery in social networks , 2012, Social Network Analysis and Mining.

[33]  Jure Leskovec,et al.  The life and death of online groups: predicting group growth and longevity , 2012, WSDM '12.

[34]  Marc Parizeau,et al.  DEAP: evolutionary algorithms made easy , 2012, J. Mach. Learn. Res..

[35]  Lin Gao,et al.  Evolution pattern discovery in dynamic networks , 2011, 2011 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC).

[36]  Przemyslaw Kazienko,et al.  Tracking Group Evolution in Social Networks , 2011, SocInfo.

[37]  Malik Magdon-Ismail,et al.  Tracking and Predicting Evolution of Social Communities , 2011, 2011 IEEE Third Int'l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int'l Conference on Social Computing.

[38]  Jacob Ratkiewicz,et al.  Political Polarization on Twitter , 2011, ICWSM.

[39]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[40]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[41]  Ciro Cattuto,et al.  What's in a crowd? Analysis of face-to-face behavioral networks , 2010, Journal of theoretical biology.

[42]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[43]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[44]  Yossi Richter,et al.  Predicting Customer Churn in Mobile Networks through Analysis of Social Groups , 2010, SDM.

[45]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[46]  Munmun De Choudhury,et al.  Social Synchrony: Predicting Mimicry of User Actions in Online Social Media , 2009, 2009 International Conference on Computational Science and Engineering.

[47]  Krishna P. Gummadi,et al.  On the evolution of user interaction in Facebook , 2009, WOSN '09.

[48]  Guy Lapalme,et al.  A systematic analysis of performance measures for classification tasks , 2009, Inf. Process. Manag..

[49]  Tore Opsahl,et al.  Clustering in weighted networks , 2009, Soc. Networks.

[50]  Sarah J. S. Wilner,et al.  Networked Narratives: Understanding Word-of-Mouth Marketing in Online Communities , 2009 .

[51]  A. Monto,et al.  Pandemic Influenza: An Inconvenient Mutation , 2009, Science.

[52]  José Hernández-Orallo,et al.  An experimental comparison of performance measures for classification , 2009, Pattern Recognit. Lett..

[53]  María José del Jesús,et al.  KEEL: a software tool to assess evolutionary algorithms for data mining problems , 2008, Soft Comput..

[54]  Michael Q. Zhang,et al.  Network-based global inference of human disease genes , 2008, Molecular systems biology.

[55]  Vicenç Gómez,et al.  Statistical analysis of the social network and discussion threads in slashdot , 2008, WWW.

[56]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[57]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[58]  A. Barabasi,et al.  Quantifying social group evolution , 2007, Nature.

[59]  Csaba Böde,et al.  Network analysis of protein dynamics , 2007, FEBS letters.

[60]  Charles X. Ling,et al.  Constructing New and Better Evaluation Measures for Machine Learning , 2007, IJCAI.

[61]  A. Barabasi,et al.  Dynamics of information access on the web. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[63]  Alex Pentland,et al.  Reality mining: sensing complex social systems , 2006, Personal and Ubiquitous Computing.

[64]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[65]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[66]  David W. Aha,et al.  Instance-Based Learning Algorithms , 1991, Machine Learning.

[67]  Bart Selman,et al.  Tracking evolving communities in large linked networks , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[69]  Yiming Yang,et al.  An Evaluation of Statistical Approaches to Text Categorization , 1999, Information Retrieval.

[70]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[71]  Michael Ley,et al.  The DBLP Computer Science Bibliography: Evolution, Research Issues, Perspectives , 2002, SPIRE.

[72]  F. Harary,et al.  The cohesiveness of blocks in social networks: Node connectivity and conditional density , 2001 .

[73]  David B. Fogel,et al.  Evolution-ary Computation 1: Basic Algorithms and Operators , 2000 .

[74]  AlpaydinEthem Combined 5 2 cv F Test for Comparing Supervised Classification Learning Algorithms , 1999 .

[75]  Ethem Alpaydın,et al.  Combined 5 x 2 cv F Test for Comparing Supervised Classification Learning Algorithms , 1999, Neural Comput..

[76]  D. Fogel,et al.  Basic Algorithms and Operators , 1999 .

[77]  Jihoon Yang,et al.  Feature Subset Selection Using a Genetic Algorithm , 1998, IEEE Intell. Syst..

[78]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[79]  Pat Langley,et al.  Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.

[80]  William W. Cohen Fast Effective Rule Induction , 1995, ICML.

[81]  Ron Kohavi,et al.  The Power of Decision Tables , 1995, ECML.

[82]  John G. Cleary,et al.  K*: An Instance-based Learner Using and Entropic Distance Measure , 1995, ICML.

[83]  Pat Langley,et al.  Induction of One-Level Decision Trees , 1992, ML.

[84]  S. Cessie,et al.  Ridge Estimators in Logistic Regression , 1992 .

[85]  J. Shaffer Modified Sequentially Rejective Multiple Test Procedures , 1986 .

[86]  J. Parvin,et al.  Measurement of the mutation rates of animal viruses: influenza A virus and poliovirus type 1 , 1986, Journal of virology.

[87]  K. Johnson An Update. , 1984, Journal of food protection.

[88]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[89]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[90]  Henry G. Small,et al.  Co-citation in the scientific literature: A new measure of the relationship between two documents , 1973, J. Am. Soc. Inf. Sci..

[91]  P. Bonacich Factoring and weighting approaches to status scores and clique identification , 1972 .

[92]  Frank Harary,et al.  Graph Theory , 2016 .

[93]  M. M. Kessler Bibliographic coupling between scientific papers , 1963 .

[94]  M. DePamphilis,et al.  HUMAN DISEASE , 1957, The Ulster Medical Journal.

[95]  M. Friedman The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .