La luz es polar : Projective geometry and real polynomial equation solving ?
暂无分享,去创建一个
[1] B. Bank,et al. Polar varieties and efficient real elimination , 2000 .
[2] Joos Heintz,et al. On the Time–Space Complexity of Geometric Elimination Procedures , 2001, Applicable Algebra in Engineering, Communication and Computing.
[3] J. Canny,et al. Efficient Incremental Algorithms for the , 1994 .
[4] Felipe Cucker,et al. Complexity estimates depending on condition and round-off error , 1998, JACM.
[5] Joos Heintz,et al. Sur la complexité du principe de Tarski-Seidenberg , 1989 .
[6] Grégoire Lecerf. Quadratic Newton Iteration for Systems with Multiplicity , 2002, Found. Comput. Math..
[7] Marc Giusti,et al. Polar Varieties, Real Equation Solving, and Data Structures: The Hypersurface Case , 1997, J. Complex..
[8] Marc Giusti,et al. A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..
[9] J. Renegar,et al. On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .
[10] Marc Giusti,et al. The Hardness of Polynomial Equation Solving , 2003, Found. Comput. Math..
[11] Guillermo Matera,et al. Probabilistic Algorithms for Geometric Elimination , 1999, Applicable Algebra in Engineering, Communication and Computing.
[12] Grégoire Lecerf. Une alternative aux methodes de reecriture pour la resolution des systemes algebriques , 2001 .
[13] Éric Schost,et al. Polar varieties and computation of one point in each connected component of a smooth real algebraic set , 2003, ISSAC '03.
[14] Ragni Piene,et al. Polar classes of singular varieties , 1978 .
[15] Michael Clausen,et al. Algebraic Complexity Theory : With the Collaboration of Thomas Lickteig , 1997 .
[16] Joos Heintz,et al. On the Complexity of Semialgebraic Sets , 1989, IFIP Congress.
[17] Marc Giusti,et al. Generalized polar varieties: geometry and algorithms , 2005, J. Complex..
[18] Mohab Safey El Din. Resolution reelle des systemes polynomiaux en dimension positive , 2001 .
[19] M. Giusti,et al. Foundations of Computational Mathematics: Kronecker's smart, little black boxes , 2001 .
[20] Joos Heintz,et al. Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..
[21] Dima Grigoriev,et al. Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..
[22] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[23] Bernard Teissier,et al. Varietes polaires II Multiplicites polaires, sections planes, et conditions de whitney , 1982 .
[24] Marie-Françoise Roy,et al. On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .
[25] Luis M. Pardo,et al. Kronecker's and Newton's Approaches to Solving: A First Comparison , 2001, J. Complex..
[26] John F. Canny,et al. Some algebraic and geometric computations in PSPACE , 1988, STOC '88.
[27] J. E. Morais,et al. Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.
[28] A Dimitri Fotiadi,et al. Varietes polaires locales et classes de Chern des varietes singulieres , 1981 .
[29] M-F Roy,et al. Géométrie algébrique réelle , 1987 .
[30] Wolfgang Vogel,et al. Lectures on Results on Bezout’s Theorem , 1984 .
[31] Bernard Teissier,et al. Variétés polaires , 1977 .
[32] Michel Coste,et al. Thom's Lemma, the Coding of Real Algebraic Numbers and the Computation of the Topology of Semi-Algebraic Sets , 1988, J. Symb. Comput..
[33] Marie-Françoise Roy,et al. Complexity of computing semi-algebraic descriptions of the connected components of a semi-algebraic set , 1998, ISSAC '98.
[34] Teresa Krick,et al. A computational method for diophantine approximation , 1996 .
[35] Marc Giusti,et al. Lower bounds for diophantine approximations , 1997 .
[36] Joos Heintz,et al. Testing polynomials which are easy to compute (Extended Abstract) , 1980, STOC '80.