La luz es polar : Projective geometry and real polynomial equation solving ?

The main outcome of this paper is the following: Let Q [X1, . . . , Xn] be the ring of n –variate polynomials over the rational numbers Q and let F1, . . . , Fp with 1 ≤ p ≤ n be given polynomials of Q [X1, . . . , Xn] of degree at most d . Suppose that F1, . . . , Fp are represented by a division–free arithmetic circuit of size L and non–scalar depth ` over Q . Furthermore, assume that the polynomials F1, . . . , Fp form a regular sequence in Q [X1, . . . , Xn] , that, for each 1 ≤ h ≤ p , the ideal generated by F1, . . . , Fh is radical and that the real algebraic variety SR defined by F1, . . . , Fp in A := R is non–empty and smooth. Then there exists an arithmetic network N with ” = ” and ” < ” decision gates over Q , which finds a (suitably encoded) representative point for each connected component of SR . The size and non–scalar depth of N are bounded by ( n p ) L(ndδ) and O(n(`+log nd) log δ) , respectively, where δ ≤ d pn−p is the (suitably defined) degree of the real interpretation of the polynomial equation system F1 = · · · = Fp = 0 . In order to prove this result we introduce the new notion of generalized, dual and conic polar varieties of equidimensional closed algebraic subvarieties of the real and complex affine and projective spaces.

[1]  B. Bank,et al.  Polar varieties and efficient real elimination , 2000 .

[2]  Joos Heintz,et al.  On the Time–Space Complexity of Geometric Elimination Procedures , 2001, Applicable Algebra in Engineering, Communication and Computing.

[3]  J. Canny,et al.  Efficient Incremental Algorithms for the , 1994 .

[4]  Felipe Cucker,et al.  Complexity estimates depending on condition and round-off error , 1998, JACM.

[5]  Joos Heintz,et al.  Sur la complexité du principe de Tarski-Seidenberg , 1989 .

[6]  Grégoire Lecerf Quadratic Newton Iteration for Systems with Multiplicity , 2002, Found. Comput. Math..

[7]  Marc Giusti,et al.  Polar Varieties, Real Equation Solving, and Data Structures: The Hypersurface Case , 1997, J. Complex..

[8]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[9]  J. Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .

[10]  Marc Giusti,et al.  The Hardness of Polynomial Equation Solving , 2003, Found. Comput. Math..

[11]  Guillermo Matera,et al.  Probabilistic Algorithms for Geometric Elimination , 1999, Applicable Algebra in Engineering, Communication and Computing.

[12]  Grégoire Lecerf Une alternative aux methodes de reecriture pour la resolution des systemes algebriques , 2001 .

[13]  Éric Schost,et al.  Polar varieties and computation of one point in each connected component of a smooth real algebraic set , 2003, ISSAC '03.

[14]  Ragni Piene,et al.  Polar classes of singular varieties , 1978 .

[15]  Michael Clausen,et al.  Algebraic Complexity Theory : With the Collaboration of Thomas Lickteig , 1997 .

[16]  Joos Heintz,et al.  On the Complexity of Semialgebraic Sets , 1989, IFIP Congress.

[17]  Marc Giusti,et al.  Generalized polar varieties: geometry and algorithms , 2005, J. Complex..

[18]  Mohab Safey El Din Resolution reelle des systemes polynomiaux en dimension positive , 2001 .

[19]  M. Giusti,et al.  Foundations of Computational Mathematics: Kronecker's smart, little black boxes , 2001 .

[20]  Joos Heintz,et al.  Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..

[21]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[22]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[23]  Bernard Teissier,et al.  Varietes polaires II Multiplicites polaires, sections planes, et conditions de whitney , 1982 .

[24]  Marie-Françoise Roy,et al.  On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .

[25]  Luis M. Pardo,et al.  Kronecker's and Newton's Approaches to Solving: A First Comparison , 2001, J. Complex..

[26]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[27]  J. E. Morais,et al.  Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.

[28]  A Dimitri Fotiadi,et al.  Varietes polaires locales et classes de Chern des varietes singulieres , 1981 .

[29]  M-F Roy,et al.  Géométrie algébrique réelle , 1987 .

[30]  Wolfgang Vogel,et al.  Lectures on Results on Bezout’s Theorem , 1984 .

[31]  Bernard Teissier,et al.  Variétés polaires , 1977 .

[32]  Michel Coste,et al.  Thom's Lemma, the Coding of Real Algebraic Numbers and the Computation of the Topology of Semi-Algebraic Sets , 1988, J. Symb. Comput..

[33]  Marie-Françoise Roy,et al.  Complexity of computing semi-algebraic descriptions of the connected components of a semi-algebraic set , 1998, ISSAC '98.

[34]  Teresa Krick,et al.  A computational method for diophantine approximation , 1996 .

[35]  Marc Giusti,et al.  Lower bounds for diophantine approximations , 1997 .

[36]  Joos Heintz,et al.  Testing polynomials which are easy to compute (Extended Abstract) , 1980, STOC '80.