tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models

The tgp package for R is a tool for fully Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian processes with jumps to the limiting linear model. Special cases also implemented include Bayesian linear models, linear CART, stationary separable and isotropic Gaussian processes. In addition to inference and posterior prediction, the package supports the (sequential) design of experiments under these models paired with several objective criteria. 1-d and 2-d plotting, with higher dimension projection and slice capabilities, and tree drawing functions (requiring maptree and combinat packages), are also provided for visualization of tgp objects.

[1]  Robert B. Gramacy,et al.  Adaptive design of supercomputer experiments , 2008 .

[2]  H. Chipman,et al.  Bayesian CART Model Search , 1998 .

[3]  G. Matheron Principles of geostatistics , 1963 .

[4]  Radford M. Neal Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification , 1997, physics/9701026.

[5]  W. Greub Linear Algebra , 1981 .

[6]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[7]  李幼升,et al.  Ph , 1989 .

[8]  D. Rubinfeld,et al.  Hedonic housing prices and the demand for clean air , 1978 .

[9]  Edward I. George,et al.  Bayesian Treed Models , 2002, Machine Learning.

[10]  P. Guttorp,et al.  Bayesian estimation of semi‐parametric non‐stationary spatial covariance structures , 2001 .

[11]  Christopher J. Paciorek,et al.  Nonstationary Gaussian Processes for Regression and Spatial Modelling , 2003 .

[12]  Klaus Obermayer,et al.  Gaussian process regression: active data selection and test point rejection , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[13]  David A. Cohn,et al.  Neural Network Exploration Using Optimal Experiment Design , 1993, NIPS.

[14]  Robert B. Gramacy,et al.  Bayesian treed gaussian process models , 2005 .

[15]  Friedrich Leisch,et al.  Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis , 2002, COMPSTAT.

[16]  Robert B. Gramacy,et al.  Parameter space exploration with Gaussian process trees , 2004, ICML.

[17]  Carl E. Rasmussen,et al.  Infinite Mixtures of Gaussian Process Experts , 2001, NIPS.

[18]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[19]  Eric R. Ziegel,et al.  Practical Nonparametric and Semiparametric Bayesian Statistics , 1998, Technometrics.

[20]  B. Silverman,et al.  Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .

[21]  Robert B. Gramacy,et al.  Gaussian processes and limiting linear models , 2008, Comput. Stat. Data Anal..

[22]  Robert B. Gramacy,et al.  Ja n 20 08 Bayesian Treed Gaussian Process Models with an Application to Computer Modeling , 2009 .

[23]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[24]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[25]  David J. C. MacKay,et al.  Information-Based Objective Functions for Active Data Selection , 1992, Neural Computation.

[26]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[27]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[28]  David Higdon,et al.  Non-Stationary Spatial Modeling , 2022, 2212.08043.

[29]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[30]  A. O'Hagan,et al.  Bayesian inference for non‐stationary spatial covariance structure via spatial deformations , 2003 .

[31]  Montserrat Fuentes,et al.  A New Class of Nonstationary Spatial Models , 2001 .

[32]  Rob Harrop,et al.  Installation and Administration , 2004 .

[33]  Robert B. Gramacy,et al.  Adaptive Design and Analysis of Supercomputer Experiments , 2008, Technometrics.

[34]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[35]  Tao Xiong,et al.  A combined SVM and LDA approach for classification , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..