High-throughput analyses and curation of protein interactions in yeast.

The yeast Saccharomyces cerevisiae is the model organism in which protein interactions have been most extensively analyzed. The vast majority of these interactions have been characterized by a variety of sophisticated high-throughput techniques probing different aspects of protein association. This chapter summarizes the major techniques, highlights their complementary nature, discusses the data they produce, and highlights some of the biases from which they suffer. A main focus is the key role played by computational methods for processing, analyzing, and validating the large body of noisy data produced by the experimental procedures. It also describes how computational methods are used to extend the coverage and reliability of protein interaction data by integrating information from heterogeneous sources and reviews the current status of literature-curated data on yeast protein interactions stored in specialized databases.

[1]  Jacques van Helden,et al.  Evaluation of clustering algorithms for protein-protein interaction networks , 2006, BMC Bioinformatics.

[2]  Hyeong Jun An,et al.  Estimating the size of the human interactome , 2008, Proceedings of the National Academy of Sciences.

[3]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[4]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[5]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[6]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[7]  Bin Liu,et al.  Michigan Molecular Interactions (MiMI): putting the jigsaw puzzle together , 2006, Nucleic Acids Res..

[8]  Shoshana J. Wodak,et al.  Local coherence in genetic interaction patterns reveals prevalent functional versatility , 2008, Bioinform..

[9]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[10]  Carole A. Goble,et al.  Investigating Semantic Similarity Measures Across the Gene Ontology: The Relationship Between Sequence and Annotation , 2003, Bioinform..

[11]  Arun K. Ramani,et al.  How complete are current yeast and human protein-interaction networks? , 2006, Genome Biology.

[12]  Salvador Ventura,et al.  Protein complementation assays: Approaches for the in vivo analysis of protein interactions , 2009, FEBS letters.

[13]  S. Pu,et al.  Up-to-date catalogues of yeast protein complexes , 2008, Nucleic acids research.

[14]  A. Tong,et al.  Synthetic genetic array analysis in Saccharomyces cerevisiae. , 2006, Methods in molecular biology.

[15]  William Stafford Noble,et al.  Choosing negative examples for the prediction of protein-protein interactions , 2006, BMC Bioinformatics.

[16]  Andrew Emili,et al.  Identifying functional modules in the physical interactome of Saccharomyces cerevisiae , 2007, Proteomics.

[17]  Hans-Werner Mewes,et al.  MPact: the MIPS protein interaction resource on yeast , 2005, Nucleic Acids Res..

[18]  Ralf Herwig,et al.  ConsensusPathDB—a database for integrating human functional interaction networks , 2008, Nucleic Acids Res..

[19]  G. Church,et al.  Modular epistasis in yeast metabolism , 2005, Nature Genetics.

[20]  Robert P. St.Onge,et al.  The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes , 2008, Science.

[21]  T. Ideker,et al.  Systematic interpretation of genetic interactions using protein networks , 2005, Nature Biotechnology.

[22]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[23]  Lothar Thiele,et al.  A systematic comparison and evaluation of biclustering methods for gene expression data , 2006, Bioinform..

[24]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[25]  Ruedi Aebersold,et al.  Quantitative interaction proteomics using mass spectrometry , 2009, Nature Methods.

[26]  Minghua Deng,et al.  Inferring Domain–Domain Interactions From Protein–Protein Interactions , 2002 .

[27]  Joel S. Bader,et al.  Where Have All the Interactions Gone? Estimating the Coverage of Two-Hybrid Protein Interaction Maps , 2007, PLoS Comput. Biol..

[28]  Xin Chen,et al.  TRANSFAC: an integrated system for gene expression regulation , 2000, Nucleic Acids Res..

[29]  Jef D Boeke,et al.  dSLAM analysis of genome-wide genetic interactions in Saccharomyces cerevisiae. , 2007, Methods.

[30]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[31]  T. Ideker,et al.  Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae , 2006, Journal of biology.

[32]  I. Stagljar,et al.  A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Mark R Chance,et al.  Modeling of protein binary complexes using structural mass spectrometry data , 2007, Protein science : a publication of the Protein Society.

[34]  Joël Janin,et al.  The third CAPRI assessment meeting Toronto, Canada, April 20-21, 2007. , 2007, Structure.

[35]  Grant W. Brown,et al.  Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map , 2007, Nature.

[36]  B. Séraphin,et al.  The tandem affinity purification (TAP) method: a general procedure of protein complex purification. , 2001, Methods.

[37]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[38]  Christian von Mering,et al.  STRING: known and predicted protein–protein associations, integrated and transferred across organisms , 2004, Nucleic Acids Res..

[39]  A. Barabasi,et al.  High-Quality Binary Protein Interaction Map of the Yeast Interactome Network , 2008, Science.

[40]  Michael Costanzo,et al.  SGAM: an array-based approach for high-resolution genetic mapping in Saccharomyces cerevisiae. , 2009, Methods in molecular biology.

[41]  William Stafford Noble,et al.  Large-scale identification of yeast integral membrane protein interactions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Dmitrij Frishman,et al.  The MIPS mammalian protein?Cprotein interaction database , 2005, Bioinform..

[43]  J. Bader,et al.  Finding friends and enemies in an enemies-only network: a graph diffusion kernel for predicting novel genetic interactions and co-complex membership from yeast genetic interactions. , 2008, Genome research.

[44]  Gary D Bader,et al.  BIND--The Biomolecular Interaction Network Database. , 2001, Nucleic acids research.

[45]  Carlos Prieto,et al.  APID: Agile Protein Interaction DataAnalyzer , 2006, Nucleic Acids Res..

[46]  William Stafford Noble,et al.  Predicting Co-Complexed Protein Pairs from Heterogeneous Data , 2008, PLoS Comput. Biol..

[47]  M. Vidal,et al.  Literature-curated protein interaction datasets , 2009, Nature Methods.

[48]  Chris F. Taylor,et al.  Proteomic Data Exchange and Storage , 2007 .

[49]  Hans-Werner Mewes,et al.  CORUM: the comprehensive resource of mammalian protein complexes , 2007, Nucleic Acids Res..

[50]  S. Lovell,et al.  Protein-protein interaction networks and biology—what's the connection? , 2008, Nature Biotechnology.

[51]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[52]  A. Cochran,et al.  Protein-protein interfaces: mimics and inhibitors. , 2001, Current opinion in chemical biology.

[53]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[54]  C. Deane,et al.  Protein Interactions , 2002, Molecular & Cellular Proteomics.

[55]  Trey Ideker,et al.  Functional Maps of Protein Complexes from Quantitative Genetic Interaction Data , 2008, PLoS Comput. Biol..

[56]  Philip M. Kim,et al.  Relating Three-Dimensional Structures to Protein Networks Provides Evolutionary Insights , 2006, Science.

[57]  Michael S. Livstone,et al.  Recurated protein interaction datasets , 2009, Nature Methods.

[58]  Sean R. Collins,et al.  Exploration of the Function and Organization of the Yeast Early Secretory Pathway through an Epistatic Miniarray Profile , 2005, Cell.

[59]  Erich E. Wanker,et al.  UniHI 4: new tools for query, analysis and visualization of the human protein–protein interactome , 2008, Nucleic Acids Res..

[60]  James Vlasblom,et al.  Challenges and Rewards of Interaction Proteomics * , 2009, Molecular & Cellular Proteomics.

[61]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[62]  Robert Gentleman,et al.  Making the most of high-throughput protein-interaction data , 2007, Genome Biology.

[63]  Sean R. Collins,et al.  Toward a Comprehensive Atlas of the Physical Interactome of Saccharomyces cerevisiae*S , 2007, Molecular & Cellular Proteomics.

[64]  William Stafford Noble,et al.  Support vector machine , 2013 .

[65]  Ian M. Donaldson,et al.  iRefIndex: A consolidated protein interaction database with provenance , 2008, BMC Bioinformatics.

[66]  E. O’Shea,et al.  Quantification of protein half-lives in the budding yeast proteome , 2006, Proceedings of the National Academy of Sciences.

[67]  Daphne Koller,et al.  A Complex-based Reconstruction of the Saccharomyces cerevisiae Interactome *S⃞ , 2009, Molecular & Cellular Proteomics.

[68]  G. Church,et al.  Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. , 2000, Journal of molecular biology.

[69]  R. Shamir,et al.  From E-MAPs to module maps: dissecting quantitative genetic interactions using physical interactions , 2008, Molecular systems biology.

[70]  C. Landry,et al.  An in Vivo Map of the Yeast Protein Interactome , 2008, Science.

[71]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[72]  H. Bussey,et al.  Exploring genetic interactions and networks with yeast , 2007, Nature Reviews Genetics.

[73]  Insuk Lee,et al.  A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality , 2007, BMC Bioinformatics.

[74]  Maria Victoria Schneider,et al.  MINT: a Molecular INTeraction database. , 2002, FEBS letters.

[75]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Shoshana J. Wodak,et al.  Markov clustering versus affinity propagation for the partitioning of protein interaction graphs , 2009, BMC Bioinformatics.

[77]  Akhilesh Pandey,et al.  Human Protein Reference Database and Human Proteinpedia as discovery tools for systems biology. , 2009, Methods in molecular biology.

[78]  Bertrand Séraphin,et al.  Subunit architecture of multimeric complexes isolated directly from cells , 2006, EMBO reports.

[79]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[80]  Jan Tavernier,et al.  Design and application of a cytokine-receptor-based interaction trap , 2001, Nature Cell Biology.

[81]  M. Tyers,et al.  Still Stratus Not Altocumulus: Further Evidence against the Date/Party Hub Distinction , 2007, PLoS biology.

[82]  Gunnar Rätsch,et al.  Support Vector Machines and Kernels for Computational Biology , 2008, PLoS Comput. Biol..

[83]  Ioannis Xenarios,et al.  DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions , 2002, Nucleic Acids Res..

[84]  T. Ito,et al.  Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[85]  D. Goldberg,et al.  Assessing experimentally derived interactions in a small world , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Y. Zhang,et al.  IntAct—open source resource for molecular interaction data , 2006, Nucleic Acids Res..

[87]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[88]  Dmitrij Frishman,et al.  MIPS: a database for genomes and protein sequences , 1999, Nucleic Acids Res..

[89]  Christian Blaschke,et al.  Text Mining for Metabolic Pathways, Signaling Cascades, and Protein Networks , 2005, Science's STKE.

[90]  S. Wodak,et al.  Docking and scoring protein complexes: CAPRI 3rd Edition , 2007, Proteins.

[91]  M. Gerstein,et al.  Subcellular localization of the yeast proteome. , 2002, Genes & development.