Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown.

We present a novel cost-efficient method for the fabrication of high-quality self-aligned plasmonic nanopores by means of an optically controlled dielectric breakdown. Excitation of a plasmonic bowtie nanoantenna on a dielectric membrane localizes the high-voltage-driven breakdown of the membrane to the hotspot of the enhanced optical field, creating a nanopore that is automatically self-aligned to the plasmonic hotspot of the bowtie. We show that the approach provides precise control over the nanopore size and that these plasmonic nanopores can be used as single molecule DNA sensors with a performance matching that of TEM-drilled nanopores. The principle of optically controlled breakdown can also be used to fabricate nonplasmonic nanopores at a controlled position. Our novel fabrication process guarantees alignment of the nanopore with the optical hotspot of the nanoantenna, thus ensuring that pore-translocating biomolecules interact with the concentrated optical field that can be used for detection and manipulation of analytes.

[1]  S. Maier,et al.  Precise attoliter temperature control of nanopore sensors using a nanoplasmonic bullseye. , 2015, Nano letters.

[2]  C. Dekker,et al.  Detection of Individual Proteins Bound along DNA Using Solid-State Nanopores. , 2015, Nano letters.

[3]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[4]  C. Dekker,et al.  Plasmonic nanopore for electrical profiling of optical intensity landscapes. , 2013, Nano letters.

[5]  M. Wanunu Nanopores: A journey towards DNA sequencing. , 2012, Physics of Life Reviews.

[6]  H. Bayley,et al.  Continuous base identification for single-molecule nanopore DNA sequencing. , 2009, Nature nanotechnology.

[7]  D. McNabb,et al.  Slowing DNA translocation in a solid-state nanopore. , 2005, Nano letters.

[8]  M. Niederweis,et al.  Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase , 2012, Nature Biotechnology.

[9]  U. Keyser,et al.  Salt dependence of ion transport and DNA translocation through solid-state nanopores. , 2006, Nano letters.

[10]  U. Keyser Controlling molecular transport through nanopores , 2011, Journal of The Royal Society Interface.

[11]  T. Mitsui,et al.  Directly observing the motion of DNA molecules near solid-state nanopores. , 2012, ACS nano.

[12]  Cees Dekker,et al.  Controlling nanopore size, shape and stability , 2010, Nanotechnology.

[13]  Amir G. Ahmadi,et al.  Wafer-scale process for fabricating arrays of nanopore devices , 2010 .

[14]  R. Kaplar,et al.  On dielectric breakdown in silicon-rich silicon nitride thin films , 2009 .

[15]  Aleksei Aksimentiev,et al.  Slowing down DNA translocation through a nanopore in lithium chloride. , 2012, Nano letters.

[16]  Stijn van Dorp,et al.  Origin of the electrophoretic force on DNA in solid-state nanopores , 2009 .

[17]  Sanmeet S. Chahal,et al.  Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution , 2015, Nanotechnology.

[18]  Kyle Briggs,et al.  Nanopore Fabrication by Controlled Dielectric Breakdown , 2014, PloS one.

[19]  A. Hall,et al.  Interpreting the conductance blockades of DNA translocations through solid-state nanopores. , 2014, ACS nano.

[20]  Yvonne E. Watson,et al.  Fabrication of nanopore array electrodes by focused ion beam milling. , 2007, Analytical chemistry.

[21]  C. Dekker,et al.  Rapid manufacturing of low-noise membranes for nanopore sensors by trans-chip illumination lithography , 2012, Nanotechnology.

[22]  Luke P. Lee,et al.  Graphene nanopore with a self-integrated optical antenna. , 2014, Nano letters.

[23]  Cees Dekker,et al.  Modeling the conductance and DNA blockade of solid-state nanopores , 2011, Nanotechnology.

[24]  Cees Dekker,et al.  Velocity of DNA during translocation through a solid-state nanopore. , 2015, Nano letters.

[25]  G. Groeseneken,et al.  Photoresistance Switching of Plasmonic Nanopores , 2014, Nano letters.

[26]  J. Stathis,et al.  Dielectric breakdown mechanisms in gate oxides , 2005 .

[27]  Cees Dekker,et al.  Single-molecule sensing with nanopores , 2015 .

[28]  J. Edel,et al.  SSB binding to single-stranded DNA probed using solid-state nanopore sensors. , 2014, The journal of physical chemistry. B.

[29]  Ruoshan Wei,et al.  Stochastic sensing of proteins with receptor-modified solid-state nanopores. , 2012, Nature nanotechnology.

[30]  J. Pelta,et al.  Focus on Protein Unfolding Through Nanopores , 2014 .

[31]  V. Henrich,et al.  Nanopore Analysis of Single-Stranded Binding Protein Interactions with DNA. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[32]  C. Dekker,et al.  DNA Translocations through Solid-State Plasmonic Nanopores , 2014, Nano letters.

[33]  Kyle Briggs,et al.  Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis. , 2014, Small.

[34]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[35]  Simon M. Sze,et al.  Current Transport and Maximum Dielectric Strength of Silicon Nitride Films , 1967 .

[36]  Romain Quidant,et al.  Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat , 2013 .

[37]  M. Muthukumar Mechanism of DNA transport through pores. , 2007, Annual review of biophysics and biomolecular structure.

[38]  S. Maier,et al.  Rapid ultrasensitive single particle surface-enhanced Raman spectroscopy using metallic nanopores. , 2013, Nano letters.

[39]  A. Tramontano,et al.  Multistep current signal in protein translocation through graphene nanopores. , 2015, The journal of physical chemistry. B.

[40]  Yi Li,et al.  Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity. , 2012, Nano letters.

[41]  Rashid Bashir,et al.  DNA-Mediated Fluctuations in Ionic Current through Silicon Oxide Nanopore Channels. Nano Lett., 4(8), 1551-1556 , 2004 .

[42]  M. Kimura Field and temperature acceleration model for time-dependent dielectric breakdown , 1999 .

[43]  L. Liz‐Marzán,et al.  Sensing using plasmonic nanostructures and nanoparticles , 2015, Nanotechnology.

[44]  M. Godin,et al.  Precise control of the size and noise of solid-state nanopores using high electric fields , 2012, Nanotechnology.