A local shape-preserving interpolation scheme for scattered data
暂无分享,去创建一个
[1] Carla Manni,et al. On a class of polynomial triangular macro-elements , 1996 .
[2] Robert J. Renka,et al. Algorithm 716: TSPACK: tension spline curve-fitting package , 1993, TOMS.
[3] Wolfgang Dahmen,et al. Convexity preserving interpolation and Powell-Sabin elements , 1992, Comput. Aided Geom. Des..
[4] Thomas A. Grandine,et al. On convexity of piecewise polynomial functions on triangulations , 1989, Comput. Aided Geom. Des..
[5] S. Rippa,et al. Data Dependent Triangulations for Piecewise Linear Interpolation , 1990 .
[6] Tim N. T. Goodman,et al. Local derivative estimation for scattered data interpolation , 1995 .
[7] C. Lawson. Software for C1 interpolation , 1977 .
[8] S. Rippa,et al. Data-dependent triangulations for scattered data interpolation and finite element approximation , 1993 .
[9] Tomas Sauer. Multivariate Bernstein polynomials and convexity , 1991, Comput. Aided Geom. Des..
[10] Ferruccio Fontanella,et al. Shape-preserving bivariate interpolation , 1990 .
[11] Carla Manni,et al. A Parametric Cubic Element with Tension Properties , 1999 .
[12] S. Rippa. Long and thin triangles can be good for linear interpolation , 1992 .
[13] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .