A kinetic safety gate controlling the delivery of unnatural amino acids to the ribosome.

Improving the yield of unnatural amino acid incorporation is an important challenge in producing novel designer proteins with unique chemical properties. Here we examine the mechanisms that restrict the incorporation of the fluorescent unnatural amino acid εNH2-Bodipy576/589-lysine (BOP-Lys) into a model protein. While the delivery of BOP-Lys-tRNA(Lys) to the ribosome is limited by its poor binding to elongation factor Tu (EF-Tu), the yield of incorporation into peptide is additionally controlled at the step of BOP-Lys-tRNA release from EF-Tu into the ribosome. The unnatural amino acid appears to disrupt the interactions that balance the strength of tRNA binding to EF-Tu-GTP with the velocity of tRNA dissociation from EF-Tu-GDP on the ribosome, which ensure uniform incorporation of standard amino acids. Circumventing this potential quality control checkpoint that specifically prevents incorporation of unnatural amino acids into proteins may provide a new strategy to increase yields of unnatural polymers.

[1]  Peter G Schultz,et al.  A genetically encoded photocaged amino acid. , 2004, Journal of the American Chemical Society.

[2]  O. Uhlenbeck,et al.  Histidine 66 in Escherichia coli Elongation Factor Tu Selectively Stabilizes Aminoacyl-tRNAs* , 2011, The Journal of Biological Chemistry.

[3]  J. Chin,et al.  Reprogramming the genetic code: from triplet to quadruplet codes. , 2012, Angewandte Chemie.

[4]  M. Rodnina,et al.  Modulation of the Rate of Peptidyl Transfer on the Ribosome by the Nature of Substrates* , 2008, Journal of Biological Chemistry.

[5]  P. Schultz,et al.  Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids. , 2009, Angewandte Chemie.

[6]  M. Rodnina,et al.  Evolutionary optimization of speed and accuracy of decoding on the ribosome , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[7]  M. Rodnina,et al.  Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  A. Kelley,et al.  The Mechanism for Activation of GTP Hydrolysis on the Ribosome , 2010, Science.

[9]  O. Uhlenbeck,et al.  Uniform Binding of Aminoacyl-tRNAs to Elongation Factor Tu by Thermodynamic Compensation , 2001, Science.

[10]  G. W. Hatfield,et al.  Separation of transfer ribonucleic acid by sepharose chromatography using reverse salt gradients. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[11]  M. Rodnina,et al.  Mechanism of Elongation Factor (EF)-Ts-catalyzed Nucleotide Exchange in EF-Tu , 2002, The Journal of Biological Chemistry.

[12]  J. Puglisi,et al.  tRNA selection and kinetic proofreading in translation , 2004, Nature Structural &Molecular Biology.

[13]  Annette Sievers,et al.  The ribosome as an entropy trap. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Jason W. Chin,et al.  Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome , 2010, Nature.

[15]  A. Pingoud,et al.  How many EF-Tu molecules participate in aminoacyl-tRNA binding? , 1991, Biochimie.

[16]  Yong-Gui Gao,et al.  The Crystal Structure of the Ribosome Bound to EF-Tu and Aminoacyl-tRNA , 2009, Science.

[17]  T. Ohtsuki,et al.  Elongation factor Tu mutants expand amino acid tolerance of protein biosynthesis system. , 2007, Journal of the American Chemical Society.

[18]  J. Chin,et al.  Expanding the Genetic Code of Yeast for Incorporation of Diverse Unnatural Amino Acids via a Pyrrolysyl-tRNA Synthetase/tRNA Pair , 2010, Journal of the American Chemical Society.

[19]  Peter J McCormick,et al.  Nascent Membrane and Secretory Proteins Differ in FRET-Detected Folding Far inside the Ribosome and in Their Exposure to Ribosomal Proteins , 2004, Cell.

[20]  O. Uhlenbeck,et al.  Tuning the affinity of aminoacyl-tRNA to elongation factor Tu for optimal decoding , 2011, Proceedings of the National Academy of Sciences.

[21]  M. Rodnina,et al.  GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Zoya Ignatova,et al.  Transient ribosomal attenuation coordinates protein synthesis and co-translational folding , 2009, Nature Structural &Molecular Biology.

[23]  O. Uhlenbeck,et al.  Different aa-tRNAs are selected uniformly on the ribosome. , 2008, Molecular cell.

[24]  J. Olejnik,et al.  Ultrasensitive fluorescence-based detection of nascent proteins in gels. , 2000, Analytical biochemistry.

[25]  Hani S. Zaher,et al.  Fidelity at the Molecular Level: Lessons from Protein Synthesis , 2009, Cell.

[26]  M. Rodnina,et al.  Codon‐dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. , 1995, The EMBO journal.

[27]  Jason W. Chin,et al.  Designer proteins: applications of genetic code expansion in cell biology , 2012, Nature Reviews Molecular Cell Biology.

[28]  Anthony C. Forster,et al.  Slow peptide bond formation by proline and other N-alkylamino acids in translation , 2009, Proceedings of the National Academy of Sciences.

[29]  Harry F. Noller,et al.  The Path of Messenger RNA through the Ribosome , 2001, Cell.

[30]  D. Söll,et al.  Expanding the Genetic Code of Escherichia coli with Phosphoserine , 2011, Science.

[31]  T. Pape,et al.  Complete kinetic mechanism of elongation factor Tu‐dependent binding of aminoacyl‐tRNA to the A site of the E.coli ribosome , 1998, The EMBO journal.

[32]  V. Ramakrishnan,et al.  How mutations in tRNA distant from the anticodon affect the fidelity of decoding , 2010, Nature Structural &Molecular Biology.

[33]  S Thirup,et al.  Crystal Structure of the Ternary Complex of Phe-tRNAPhe, EF-Tu, and a GTP Analog , 1995, Science.

[34]  Marina V. Rodnina,et al.  Different substrate-dependent transition states in the active site of the ribosome , 2011, Nature.

[35]  M. Ehrenberg,et al.  Inefficient delivery but fast peptide bond formation of unnatural L-aminoacyl-tRNAs in translation. , 2012, Journal of the American Chemical Society.

[36]  M. Rodnina,et al.  Transient kinetics, fluorescence, and FRET in studies of initiation of translation in bacteria. , 2007, Methods in enzymology.

[37]  A. Komar,et al.  A pause for thought along the co-translational folding pathway. , 2009, Trends in biochemical sciences.

[38]  S. Joseph,et al.  Simulating movement of tRNA into the ribosome during decoding. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  T. Leyh,et al.  Natural amino acids do not require their native tRNAs for efficient selection by the ribosome , 2009, Nature chemical biology.

[40]  F. Neidhart Escherichia coli and Salmonella. , 1996 .

[41]  Peter G Schultz,et al.  Adding new chemistries to the genetic code. , 2010, Annual review of biochemistry.

[42]  Henning Urlaub,et al.  EF-P Is Essential for Rapid Synthesis of Proteins Containing Consecutive Proline Residues , 2013, Science.

[43]  S. Blacklow,et al.  Amino acid backbone specificity of the Escherichia coli translation machinery. , 2004, Journal of the American Chemical Society.

[44]  F. Neidhardt,et al.  Escherichia Coli and Salmonella: Typhimurium Cellular and Molecular Biology , 1987 .