Theory of flow and deformation of swelling porous materials at the macroscale

Abstract We develop a theoretical foundations for a macroscale model for flow and deformation for a highly interacting porous media, i.e. a swelling porous media such as expansive soils by assuming the properties of the fluid phase are a function of the liquid volume fraction. We assume the porous material consists of a solid phase and liquid phase, that it swells when whetted and shrinks when dried, and that the process is isothermal. This is of interest when modeling settling due to the pumping of water or oil when there is a high clay content, compaction due to construction, or, in other fields, modeling soft bio-tissue, bones, or man-made porous materials. Here we review the assumptions and thermodynamical framework used to arrive at a generalized Darcy’s law for flow and then derive a generalized Terzaghi’s principle of effective stress.

[1]  Transport of Multi-Electrolytes in Charged Hydrated Biological Soft Tissues , 1999 .

[2]  J. Korringa,et al.  On the Dependence of the Elastic Properties of a Porous Rock on the Compressibility of the Pore Fluid , 1975 .

[3]  W M Lai,et al.  A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors. , 1998, Journal of biomechanical engineering.

[4]  Alessandro Gajo,et al.  Chemo-mechanical coupling in saturated porous media: elastic–plastic behaviour of homoionic expansive clays , 2002 .

[5]  Lynn S. Bennethum,et al.  On the derivation of the transport equation for swelling porous materials with finite deformation , 2006 .

[6]  Dirk E. Maier,et al.  Thermomechanics of Swelling Biopolymeric Systems , 2003 .

[7]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[8]  R. D. Boer,et al.  The development of the concept of effective stresses , 1990 .

[9]  JD Jan Janssen,et al.  A validation of the quadriphasic mixture theory for intervertebral disc tissue , 1997 .

[10]  J. H. Cushman,et al.  Multicomponent, Multiphase Thermodynamics of Swelling Porous Media with Electroquasistatics: II. Constitutive Theory , 2000 .

[11]  Martin R. Okos,et al.  Moisture transport in shrinking gels during saturated drying , 1997 .

[12]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[13]  Kamyar Haghighi,et al.  Effect of viscoelastic relaxation on moisture transport in foods. Part I: Solution of general transport equation , 2004, Journal of mathematical biology.

[14]  William G. Gray,et al.  General conservation equations for multi-phase systems: 1. Averaging procedure , 1979 .

[15]  T. Giorgi,et al.  Generalized Forchheimer Equation for Two-Phase Flow Based on Hybrid Mixture Theory , 1996 .

[16]  Stephen Whitaker,et al.  ADVANCES IN THEORY OF FLUID MOTION IN POROUS MEDIA , 1969 .

[17]  John H. Cushman,et al.  Multiscale, hybrid mixture theory for swelling systems—I: balance laws , 1996 .

[18]  John H. Cushman,et al.  MODIFIED DARCY'S LAW, TERZAGHI'S EFFECTIVE STRESS PRINCIPLE AND FICK'S LAW FOR SWELLING CLAY SOILS , 1997 .

[19]  P. F. Low The clay/water interface and its role in the environment , 1994 .

[20]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[21]  G. Marsily Quantitative Hydrogeology: Groundwater Hydrology for Engineers , 1986 .

[22]  John H. Cushman,et al.  Macroscale Thermodynamics and the Chemical Potential for Swelling Porous Media , 1997 .

[23]  S. Whitaker Diffusion and dispersion in porous media , 1967 .

[24]  Herbert F. Wang Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology , 2000 .

[25]  William G. Gray,et al.  Macroscale continuum mechanics for multiphase porous-media flow including phases, interfaces, common lines and common points , 1998 .

[26]  Olivier Coussy,et al.  Mechanics of porous continua , 1995 .

[27]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[28]  J. H. Cushman,et al.  Multicomponent, Multiphase Thermodynamics of Swelling Porous Media with Electroquasistatics: I. Macroscale Field Equations , 1999 .

[29]  William G. Gray,et al.  General conservation equations for multi-phase systems: 3. Constitutive theory for porous media flow. , 1980 .

[30]  Jd Jan Janssen,et al.  Quadriphasic mechanics of swelling incompressible porous media , 1997 .

[31]  P. F. Low Structural component of the swelling pressure of clays , 1987 .

[32]  John H. Cushman,et al.  Multiscale, hybrid mixture theory for swelling systems—II: constitutive theory , 1996 .

[33]  K. Terzaghi Theoretical Soil Mechanics , 1943 .

[34]  P. F. Low,et al.  The swelling of clay: II. Montmorillonites. , 1980 .

[35]  William G. Gray,et al.  General conservation equations for multi-phase systems: 2. Mass, momenta, energy, and entropy equations , 1979 .

[36]  John H. Cushman,et al.  Toward Rational Design of Drug Delivery Substrates: II. Mixture Theory for Three-Scale Biocompatible Polymers and a Computational Example , 2004, Multiscale Model. Simul..

[37]  A. Cemal Eringen,et al.  Mechanics of continua , 1967 .

[38]  M. Murad,et al.  A Two-Scale Model for Coupled Electro-Chemo-Mechanical Phenomena and Onsager’s Reciprocity Relations in Expansive Clays: II Computational Validation , 2006 .

[39]  James G. Berryman,et al.  Effective stress for transport properties of inhomogeneous porous rock , 1992 .

[40]  John H. Cushman,et al.  A primer on upscaling tools for porous media , 2002 .

[41]  M. Biot,et al.  THE ELASTIC COEFFICIENTS OF THE THEORY OF CONSOLIDATION , 1957 .

[42]  Eli Ruckenstein,et al.  Electrolyte osmosis through capillaries , 1981 .

[43]  M. McBride A Critique of Diffuse Double Layer Models Applied to Colloid and Surface Chemistry , 1997 .

[44]  T. B. Anderson,et al.  Fluid Mechanical Description of Fluidized Beds. Equations of Motion , 1967 .

[45]  John H. Cushman,et al.  Multiscale fluid transport theory for swelling biopolymers , 2003 .

[46]  John H. Cushman,et al.  Effect of viscoelastic relaxation on moisture transport in foods. Part II: Sorption and drying of soybeans , 2004, Journal of mathematical biology.

[47]  Márcio A. Murad,et al.  A Two-Scale Model for Coupled Electro-Chemo-Mechanical Phenomena and Onsager’s Reciprocity Relations in Expansive Clays: I Homogenization Analysis , 2006 .

[48]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[49]  Lynn S. Bennethum,et al.  Compressibility Moduli for Porous Materials Incorporating Volume Fraction , 2006 .

[50]  Alain Molinari,et al.  Micromechanical approach to the behavior of poroelastic materials , 2002 .

[51]  William G. Gray,et al.  Unsaturated Flow Theory Including Interfacial Phenomena , 1991 .

[52]  L. Bennethum,et al.  Three Pressures in Porous Media , 2004 .

[53]  P. F. Low,et al.  Nature and Properties of Water in Montmorillonite-Water Systems1 , 1979 .

[54]  John H. Cushman Molecular-scale lubrication , 1990, Nature.

[55]  John H. Cushman,et al.  Multiscale flow and deformation in hydrophilic swelling porous media , 1996 .

[56]  Robert W. Zimmerman,et al.  Compressibility of Sandstones , 1991 .

[57]  John H. Cushman,et al.  Toward Rational Design of Drug Delivery Substrates: I. Mixture Theory for Two-Scale Biocompatible Polymers , 2004, Multiscale Model. Simul..

[58]  Jmrj Jacques Huyghe,et al.  Thermo-Chemo-Electro-Mechanical Formulation of Saturated Charged Porous Solids , 1999 .

[59]  John H. Cushman,et al.  A multi-scale theory of swelling porous media: I. Application to one-dimensional consolidation , 1995 .