신경회로망을 이용한 원전 PWR 증기발생기의 고장진단

원자력 발전소는 안정성 빚 신뢰성 확보가 가장 중요하므로 고장의 감지 및 진단 시스템의 개발은 원전 자체가 구축하고 있는 다중의 하드웨어 중첩도(hardware redundancy)에도 불구하고 가장 중요한 문제로 취급되고 있다. 본 논문에서는 원 전 PWR 증기발생기에서 발생한 고장을 진단하기 위한 알고리듬의 개발을 위해 시스템에서 발생한 고장을 감지하고 분류 할 수 있는 ART2 신경회로망 기반 고장진단방법을 제안한다. 고장진단시스템은 발생한 고장을 감지하기 위한 고장감지부, 변화된 시스템파라미터를 추정하기 위한 파라미터 추정부 및 발생한 고장의 종류를 알아내기 위한 고장분류부로 구성된다. 고장분류부는 여러 경계인수를 갖는 ART2(adaptive resonance theory 2) 신경회로망을 이용한 고장분류기로 구성된다. 제안한 고장진단 알고리듬을 증기발생기의 고장진단문제에 적용하여 성능을 확인하였다.