Stability of block algorithms with fast level-3 BLAS
暂无分享,去创建一个
[1] J. H. Wilkinson. Error Analysis of Eigenvalue Techniques Based on Orthogonal Transformations , 1962 .
[2] W. Prager,et al. Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides , 1964 .
[3] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[4] Shmuel Winograd,et al. A New Algorithm for Inner Product , 1968, IEEE Transactions on Computers.
[5] V. Strassen. Gaussian elimination is not optimal , 1969 .
[6] R. Brent. Error analysis of algorithms for matrix multiplication and triangular decomposition using Winograd's identity , 1970 .
[7] R. Skeel. Iterative refinement implies numerical stability for Gaussian elimination , 1980 .
[8] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[9] Gene H. Golub,et al. Matrix computations , 1983 .
[10] Christian H. Bischof,et al. The WY representation for products of householder matrices , 1985, PPSC.
[11] L. Kaufman,et al. Squeezing the most out of eigenvalue solvers on high-performance computers , 1986 .
[12] William Jalby,et al. Impact of Hierarchical Memory Systems On Linear Algebra Algorithm Design , 1988 .
[13] Robert Schreiber,et al. Block Algorithms for Parallel Machines , 1988 .
[14] N. Higham. How Accurate is Gaussian Elimination , 1989 .
[15] James Demmel,et al. On a Block Implementation of Hessenberg Multishift QR Iteration , 1989, Int. J. High Speed Comput..
[16] N. Higham. A Collection of Test Matrices in MATLAB , 1989 .
[17] P. Mayes,et al. LAPACK working note No. 12: Banded cholesky factorization using level 3 BLAS , 1989 .
[18] C. Loan,et al. A Storage-Efficient $WY$ Representation for Products of Householder Transformations , 1989 .
[19] Jack Dongarra,et al. A Project for Developing a Linear Algebra Library for High-Performance Computers , 1989 .
[20] J. Demmel,et al. On Floating Point Errors in Cholesky , 1989 .
[21] Jack J. Dongarra,et al. A set of level 3 basic linear algebra subprograms , 1990, TOMS.
[22] K. A. Gallivan,et al. Parallel Algorithms for Dense Linear Algebra Computations , 1990, SIAM Rev..
[23] N. Higham. Bounding the error in Gaussian Elimination for Tridiagonal systems , 1990 .
[24] Nicholas J. Higham,et al. Exploiting fast matrix multiplication within the level 3 BLAS , 1990, TOMS.
[25] D. Sorensen,et al. Block reduction of matrices to condensed forms for eigenvalue computations , 1990 .
[26] Jack J. Dongarra,et al. Algorithm 679: A set of level 3 basic linear algebra subprograms: model implementation and test programs , 1990, TOMS.
[27] N. Higham. Iterative refinement enhances the stability ofQR factorization methods for solving linear equations , 1991 .
[28] Nicholas J. Higham,et al. Algorithm 694: a collection of test matrices in MATLAB , 1991, TOMS.
[29] Nicholas J. Higham. Stability of a Method for Multiplying Complex Matrices with Three Real Matrix Multiplications , 1992, SIAM J. Matrix Anal. Appl..
[30] N. Higham,et al. Stability of methods for matrix inversion , 1992 .