Double-edge factor graphs: Definition, properties, and examples
暂无分享,去创建一个
[1] Pascal O. Vontobel,et al. The Bethe permanent of a non-negative matrix , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[2] Nicholas Ruozzi,et al. The Bethe Partition Function of Log-supermodular Graphical Models , 2012, NIPS.
[3] Pascal O. Vontobel,et al. Quantum factor graphs: Closing-the-box operation and variational approaches , 2016, 2016 International Symposium on Information Theory and Its Applications (ISITA).
[4] G. Forney,et al. Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[5] P. O. Vontobel,et al. The Bethe Permanent of a Nonnegative Matrix , 2011, IEEE Transactions on Information Theory.
[6] Ryuhei Mori,et al. Holographic transformation, belief propagation and loop calculus for generalized probabilistic theories , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).
[7] William T. Freeman,et al. Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.
[8] Hans-Andrea Loeliger,et al. Factor Graphs for Quantum Probabilities , 2015, IEEE Transactions on Information Theory.
[9] Pascal O. Vontobel. The Bethe approximation of the pattern maximum likelihood distribution , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[10] Brendan J. Frey,et al. Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.
[11] H.-A. Loeliger,et al. An introduction to factor graphs , 2004, IEEE Signal Process. Mag..
[12] D. Poulin,et al. Quantum Graphical Models and Belief Propagation , 2007, 0708.1337.
[13] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[14] Pascal O. Vontobel,et al. Counting in Graph Covers: A Combinatorial Characterization of the Bethe Entropy Function , 2010, IEEE Transactions on Information Theory.
[15] Dmitry M. Malioutov,et al. Walk-Sums and Belief Propagation in Gaussian Graphical Models , 2006, J. Mach. Learn. Res..
[16] Hans-Andrea Loeliger,et al. A factor-graph representation of probabilities in quantum mechanics , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[17] R. Høegh-Krohn,et al. Spectral Properties of Positive Maps on C*‐Algebras , 1978 .
[18] R. Schrader. Perron-Frobenius Theory for Positive Maps on Trace Ideals , 2000, math-ph/0007020.
[19] Scott Aaronson,et al. The computational complexity of linear optics , 2010, STOC '11.
[20] Pascal O. Vontobel,et al. Estimating the information rate of a channel with classical input and output and a quantum state , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).
[21] Leslie G. Valiant,et al. The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..