On generalized principal eigenvalues of nonlocal operators witha drift
暂无分享,去创建一个
[1] N. Shigesada,et al. Biological Invasions: Theory and Practice , 1997 .
[2] Chris Cosner,et al. Diffusive logistic equations with indefinite weights: population models in disrupted environments , 1991, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[3] Henri Berestycki,et al. Analysis of the periodically fragmented environment model: II—biological invasions and pulsating travelling fronts , 2005 .
[4] R. Pinsky. Second Order Elliptic Operators with Periodic Coefficients: Criticality Theory, Perturbations, and Positive Harmonic Functions , 1995 .
[5] A. S. Antolín,et al. Lower and upper bounds for the first eigenvalue of nonlocal diffusion problems in the whole space , 2011, 1111.4114.
[6] P. Fife. An Integrodifferential Analog of Semilinear Parabolic PDE’s , 2017 .
[7] S. Varadhan,et al. The principal eigenvalue and maximum principle for second‐order elliptic operators in general domains , 1994 .
[8] L. Collatz. Einschließungssatz für die charakteristischen Zahlen von Matrizen , 1942 .
[9] Wenxian Shen,et al. Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats , 2012 .
[10] Bas Lemmens,et al. Nonlinear Perron-Frobenius Theory , 2012 .
[11] V. Hutson,et al. Non-local dispersal , 2005, Differential and Integral Equations.
[12] S. Varadhan,et al. On a variational formula for the principal eigenvalue for operators with maximum principle. , 1975, Proceedings of the National Academy of Sciences of the United States of America.
[13] Luca Rossi,et al. On the principal eigenvalue of elliptic operators in $\R^N$ and applications , 2006 .
[14] Mark A. Lewis,et al. The Effect of Dispersal Patterns on Stream Populations , 2005, SIAM Rev..
[15] Henri Berestycki,et al. Liouville-type results for semilinear elliptic equations in unbounded domains , 2007 .
[16] R. Pinsky. TRANSIENCE, RECURRENCE AND LOCAL EXTINCTION PROPERTIES OF THE SUPPORT FOR SUPERCRITICAL FINITE MEASURE-VALUED DIFFUSIONS' , 1996 .
[17] S. Gaubert,et al. A Collatz-Wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones , 2011, 1112.5968.
[18] H. Berestycki,et al. Generalizations and Properties of the Principal Eigenvalue of Elliptic Operators in Unbounded Domains , 2010, 1008.4871.
[19] Henri Berestycki,et al. Analysis of the periodically fragmented environment model : I – Species persistence , 2005, Journal of mathematical biology.
[20] Yuan Lou,et al. Random dispersal vs. non-local dispersal , 2009 .
[21] Wenxian Shen,et al. Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats , 2010 .
[22] R. Pinsky. Positive Harmonic Functions and Diffusion: References , 1995 .
[23] Julio D. Rossi,et al. On the principal eigenvalue of some nonlocal diffusion problems , 2009 .
[24] H. Wielandt. Unzerlegbare, nicht negative Matrizen , 1950 .
[25] R. Nussbaum,et al. On variational principles for the generalized principal eigenvalue of second order elliptic operators and some applications , 1992 .
[26] V. Hutson,et al. The evolution of dispersal , 2003, Journal of mathematical biology.
[27] J. Coville. Harnack type inequality for positive solution of some integral equation , 2012, 1302.1677.
[28] O. Diekmann,et al. UvA-DARE ( Digital Academic Repository ) Can a species keep pace with a shifting climate ? , 2009 .
[29] Krzysztof Bogdan,et al. Estimates of the Green Function for the Fractional Laplacian Perturbed by Gradient , 2010, 1009.2472.
[30] L. Rossi. Liouville type results for periodic and almost periodic linear operators , 2008, 0801.2291.
[31] J. Coville. On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators , 2010, 1106.5137.
[32] P. Turchin. Quantitative analysis of movement : measuring and modeling population redistribution in animals and plants , 1998 .
[33] Jerome Coville,et al. Pulsating fronts for nonlocal dispersion and KPP nonlinearity , 2013, 1302.1053.
[34] H. Berestycki,et al. On the definition and the properties of the principal eigenvalue of some nonlocal operators , 2015, 1512.06529.
[35] Chris Cosner,et al. The effects of spatial heterogeneity in population dynamics , 1991 .
[36] Chris Cosner,et al. On the effects of spatial heterogeneity on the persistence of interacting species , 1998 .
[37] H. Berestycki,et al. Persistence criteria for populations with non-local dispersion , 2014, Journal of Mathematical Biology.
[38] Andreas E. Kyprianou,et al. Local extinction versus local exponential growth for spatial branching processes , 2004 .
[39] Grégoire Nadin. The principal eigenvalue of a space–time periodic parabolic operator , 2009 .
[40] M. Kot,et al. Discrete-time growth-dispersal models with shifting species ranges , 2011, Theoretical Ecology.
[41] Xuefeng Wang,et al. On eigenvalue problems arising from nonlocal diffusion models , 2016 .
[42] J. Coville. Nonlocal refuge model with a partial control , 2013, 1305.7122.