On generalized principal eigenvalues of nonlocal operators witha drift

This article is concerned with the following spectral problem: to find a positive function $\Phi$ $\in$ C 1 ($\Omega$) and $\lambda$ $\in$ R such that q(x)$\Phi$ (x) + ^ $\Omega$ J(x, y)$\Phi$(y) dy + a(x)$\Phi$(x) + $\lambda$$\Phi$(x) = 0 for x $\in$ $\Omega$, where $\Omega$ $\subset$ R is a non-empty domain (open interval), possibly unbounded, J is a positive continuous kernel, and a and q are continuous coefficients. Such a spectral problem naturally arises in the study of nonlocal population dynamics models defined in a space-time varying environment encoding the influence of a climate change through a spatial shift of the coefficient. In such models, working directly in a moving frame that matches the spatial shift leads to consider a problem where the dispersal of the population is modeled by a nonlocal operator with a drift term. Assuming that the drift q is a positive function, for rather general assumptions on J and a, we prove the existence of a principal eigenpair ($\lambda$ p , $\Phi$ p) and derive some of its main properties. In particular, we prove that $\lambda$ p ($\Omega$) = lim R$\rightarrow$+$\infty$ $\lambda$ p ($\Omega$ R), where $\Omega$ R = $\Omega$ $\cap$ (--R, R) and $\lambda$ p ($\Omega$ R) corresponds to the principal eigenvalue of the truncation operator defined in $\Omega$ R. The proofs especially rely on the derivation of a new Harnack type inequality for positive solutions of such problems.

[1]  N. Shigesada,et al.  Biological Invasions: Theory and Practice , 1997 .

[2]  Chris Cosner,et al.  Diffusive logistic equations with indefinite weights: population models in disrupted environments , 1991, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[3]  Henri Berestycki,et al.  Analysis of the periodically fragmented environment model: II—biological invasions and pulsating travelling fronts , 2005 .

[4]  R. Pinsky Second Order Elliptic Operators with Periodic Coefficients: Criticality Theory, Perturbations, and Positive Harmonic Functions , 1995 .

[5]  A. S. Antolín,et al.  Lower and upper bounds for the first eigenvalue of nonlocal diffusion problems in the whole space , 2011, 1111.4114.

[6]  P. Fife An Integrodifferential Analog of Semilinear Parabolic PDE’s , 2017 .

[7]  S. Varadhan,et al.  The principal eigenvalue and maximum principle for second‐order elliptic operators in general domains , 1994 .

[8]  L. Collatz Einschließungssatz für die charakteristischen Zahlen von Matrizen , 1942 .

[9]  Wenxian Shen,et al.  Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats , 2012 .

[10]  Bas Lemmens,et al.  Nonlinear Perron-Frobenius Theory , 2012 .

[11]  V. Hutson,et al.  Non-local dispersal , 2005, Differential and Integral Equations.

[12]  S. Varadhan,et al.  On a variational formula for the principal eigenvalue for operators with maximum principle. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Luca Rossi,et al.  On the principal eigenvalue of elliptic operators in $\R^N$ and applications , 2006 .

[14]  Mark A. Lewis,et al.  The Effect of Dispersal Patterns on Stream Populations , 2005, SIAM Rev..

[15]  Henri Berestycki,et al.  Liouville-type results for semilinear elliptic equations in unbounded domains , 2007 .

[16]  R. Pinsky TRANSIENCE, RECURRENCE AND LOCAL EXTINCTION PROPERTIES OF THE SUPPORT FOR SUPERCRITICAL FINITE MEASURE-VALUED DIFFUSIONS' , 1996 .

[17]  S. Gaubert,et al.  A Collatz-Wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones , 2011, 1112.5968.

[18]  H. Berestycki,et al.  Generalizations and Properties of the Principal Eigenvalue of Elliptic Operators in Unbounded Domains , 2010, 1008.4871.

[19]  Henri Berestycki,et al.  Analysis of the periodically fragmented environment model : I – Species persistence , 2005, Journal of mathematical biology.

[20]  Yuan Lou,et al.  Random dispersal vs. non-local dispersal , 2009 .

[21]  Wenxian Shen,et al.  Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats , 2010 .

[22]  R. Pinsky Positive Harmonic Functions and Diffusion: References , 1995 .

[23]  Julio D. Rossi,et al.  On the principal eigenvalue of some nonlocal diffusion problems , 2009 .

[24]  H. Wielandt Unzerlegbare, nicht negative Matrizen , 1950 .

[25]  R. Nussbaum,et al.  On variational principles for the generalized principal eigenvalue of second order elliptic operators and some applications , 1992 .

[26]  V. Hutson,et al.  The evolution of dispersal , 2003, Journal of mathematical biology.

[27]  J. Coville Harnack type inequality for positive solution of some integral equation , 2012, 1302.1677.

[28]  O. Diekmann,et al.  UvA-DARE ( Digital Academic Repository ) Can a species keep pace with a shifting climate ? , 2009 .

[29]  Krzysztof Bogdan,et al.  Estimates of the Green Function for the Fractional Laplacian Perturbed by Gradient , 2010, 1009.2472.

[30]  L. Rossi Liouville type results for periodic and almost periodic linear operators , 2008, 0801.2291.

[31]  J. Coville On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators , 2010, 1106.5137.

[32]  P. Turchin Quantitative analysis of movement : measuring and modeling population redistribution in animals and plants , 1998 .

[33]  Jerome Coville,et al.  Pulsating fronts for nonlocal dispersion and KPP nonlinearity , 2013, 1302.1053.

[34]  H. Berestycki,et al.  On the definition and the properties of the principal eigenvalue of some nonlocal operators , 2015, 1512.06529.

[35]  Chris Cosner,et al.  The effects of spatial heterogeneity in population dynamics , 1991 .

[36]  Chris Cosner,et al.  On the effects of spatial heterogeneity on the persistence of interacting species , 1998 .

[37]  H. Berestycki,et al.  Persistence criteria for populations with non-local dispersion , 2014, Journal of Mathematical Biology.

[38]  Andreas E. Kyprianou,et al.  Local extinction versus local exponential growth for spatial branching processes , 2004 .

[39]  Grégoire Nadin The principal eigenvalue of a space–time periodic parabolic operator , 2009 .

[40]  M. Kot,et al.  Discrete-time growth-dispersal models with shifting species ranges , 2011, Theoretical Ecology.

[41]  Xuefeng Wang,et al.  On eigenvalue problems arising from nonlocal diffusion models , 2016 .

[42]  J. Coville Nonlocal refuge model with a partial control , 2013, 1305.7122.