IMAGING THE MOLECULAR GAS IN A SUBMILLIMETER GALAXY AT z = 4.05: COLD MODE ACCRETION OR A MAJOR MERGER?

We present a high-resolution (down to 0.″18), multi-transition imaging study of the molecular gas in the z = 4.05 submillimeter galaxy GN20. GN20 is one of the most luminous starburst galaxy known at z>4, and is a member of a rich proto-cluster of galaxies at z = 4.05 in GOODS-North. We have observed the CO 1–0 and 2–1 emission with the Very Large Array (VLA), the CO 6–5 emission with the Plateau de Bure Interferometer, and the 5–4 emission with Combined Array for Research in Millimeter Astronomy. The H2 mass derived from the CO 1–0 emission is 1.3 × 1011(α/0.8) M☉. High-resolution imaging of CO 2–1 shows emission distributed over a large area, appearing as partial ring, or disk, of ∼10 kpc diameter. The integrated CO excitation is higher than found in the inner disk of the Milky Way, but lower than that seen in high-redshift quasar host galaxies and low-redshift starburst nuclei. The CO 4–3 integrated line strength is more than a factor of 2 lower than expected for thermal excitation. The excitation can be modeled with two gas components: a diffuse, lower excitation component with a radius ∼4.5 kpc and a filling factor ∼0.5, and a more compact, higher excitation component (radius ∼2.5 kpc, filling factor ∼0.13). The lower excitation component contains at least half the molecular gas mass of the system, depending on the relative conversion factor. The VLA CO 2–1 image at 0.″2 resolution shows resolved, clumpy structure, with a few brighter clumps with intrinsic sizes ∼2 kpc. The velocity field determined from the CO 6–5 emission is consistent with a rotating disk with a rotation velocity of ∼570 km s−1 (using an inclination angle of 45°), from which we derive a dynamical mass of 3 × 1011 M☉ within about 4 kpc radius. The star formation distribution, as derived from imaging of the radio synchrotron and dust continuum, is on a similar scale as the molecular gas distribution. The molecular gas and star formation are offset by ∼1″ from the Hubble Space Telescope I-band emission, implying that the regions of most intense star formation are highly dust obscured on a scale of ∼10 kpc. The large spatial extent and ordered rotation of this object suggests that this is not a major merger, but rather a clumpy disk accreting gas rapidly in minor mergers or smoothly from the proto-intracluster medium. Qualitatively, the kinematic and structural properties of GN20 compare well to the most rapid star formers fed primarily by cold accretion in cosmological hydrodynamic simulations. Conversely, if GN20 is a major, gas-rich merger, then some process has managed to ensure that the star formation and molecular gas distribution has not been focused into one or two compact regions.

[1]  C. Carilli,et al.  HIGH-SENSITIVITY ARRAY OBSERVATIONS OF THE z = 1.87 SUBMILLIMETER GALAXY GOODS 850-3 , 2010, 1002.3324.

[2]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[3]  P. P. van der Werf,et al.  CO J = 6–5 IN Arp 220: STRONG EFFECTS OF DUST ON HIGH-J CO LINES , 2010, 1001.3653.

[4]  Michelle Doherty,et al.  Optical and near-IR spectroscopy of candidate red galaxies in two z ~ 2.5 proto-clusters , 2009, 0911.1717.

[5]  B. Groves,et al.  The formation of high-redshift submillimetre galaxies , 2009, 0904.0004.

[6]  H. McCracken,et al.  ENVIRONMENT OF MAMBO GALAXIES IN THE COSMOS FIELD , 2009, 0911.4297.

[7]  J. Kneib,et al.  PHYSICAL PROPERTIES AND MORPHOLOGY OF A NEWLY IDENTIFIED COMPACT z = 4.04 LENSED SUBMILLIMETER GALAXY IN ABELL 2218 , 2009, 0911.2004.

[8]  G. Illingworth,et al.  THE HUBBLE SEQUENCE BEYOND z = 2 FOR MASSIVE GALAXIES: CONTRASTING LARGE STAR-FORMING AND COMPACT QUIESCENT GALAXIES , 2009, 0909.0260.

[9]  A. Cimatti,et al.  GMASS ultradeep spectroscopy of galaxies at z ~ 2 - V. Witnessing the assembly at z = 1.6 of a galaxy cluster , 2009, 0906.4489.

[10]  M. Uslenghi,et al.  THE PROPERTIES OF QUASAR HOSTS AT THE PEAK OF THE QUASAR ACTIVITY , 2009, 0908.0204.

[11]  F. Walter,et al.  IMAGING ATOMIC AND HIGHLY EXCITED MOLECULAR GAS IN a z = 6.42 QUASAR HOST GALAXY: COPIOUS FUEL FOR AN EDDINGTON-LIMITED STARBURST AT THE END OF COSMIC REIONIZATION , 2009, 0908.0018.

[12]  D. Elbaz,et al.  LOW MILKY-WAY-LIKE MOLECULAR GAS EXCITATION OF MASSIVE DISK GALAXIES AT z ∼ 1.5 , 2009, 0905.3637.

[13]  Bonn,et al.  RADIO AND X-RAY PROPERTIES OF SUBMILLIMETER GALAXIES IN THE A2125 FIELD , 2009, 0905.0691.

[14]  D. Thompson,et al.  STAR FORMATION AND DUST OBSCURATION AT z ≈ 2: GALAXIES AT THE DAWN OF DOWNSIZING , 2009, 0905.1674.

[15]  Robert C. Nichol,et al.  Early assembly of the most massive galaxies , 2009, Nature.

[16]  D. Elbaz,et al.  A CO EMISSION LINE FROM THE OPTICAL AND NEAR-IR UNDETECTED SUBMILLIMETER GALAXY GN10 , 2009, 0903.3046.

[17]  T. Lauer,et al.  Compact high-redshift galaxies are the cores of the most massive present-day spheroids , 2009, 0903.2479.

[18]  J. Ostriker,et al.  MINOR MERGERS AND THE SIZE EVOLUTION OF ELLIPTICAL GALAXIES , 2009, 0903.1636.

[19]  NOAO,et al.  A submillimetre galaxy at z = 4.76 in the LABOCA survey of the Extended Chandra Deep Field-South , 2009, 0902.4464.

[20]  F. Walter,et al.  A kiloparsec-scale hyper-starburst in a quasar host less than 1 gigayear after the Big Bang , 2009, Nature.

[21]  B. Elmegreen,et al.  BULGE AND CLUMP EVOLUTION IN HUBBLE ULTRA DEEP FIELD CLUMP CLUSTERS, CHAINS AND SPIRAL GALAXIES , 2008, 0810.5404.

[22]  D. Elbaz,et al.  TWO BRIGHT SUBMILLIMETER GALAXIES IN A z = 4.05 PROTOCLUSTER IN GOODS-NORTH, AND ACCURATE RADIO-INFRARED PHOTOMETRIC REDSHIFTS , 2008, 0810.3108.

[23]  R. Davé,et al.  Galaxies in a simulated ΛCDM Universe – I. Cold mode and hot cores , 2008, 0809.1430.

[24]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[25]  T. Naab,et al.  EQUAL- AND UNEQUAL-MASS MERGERS OF DISK AND ELLIPTICAL GALAXIES WITH BLACK HOLES , 2008, Proceedings of the International Astronomical Union.

[26]  O. Fèvre,et al.  Molecular Gas in a Submillimeter Galaxy at z = 4.5: Evidence for a Major Merger at 1 Billion Years after the Big Bang , 2008, 0810.3405.

[27]  B. Madore,et al.  THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY , 2008, 0810.2556.

[28]  B. Madore,et al.  THE STAR FORMATION LAW IN NEARBY GALAXIES ON SUB-KPC SCALES , 2008, 0810.2541.

[29]  I. Smail,et al.  DO SUBMILLIMETER GALAXIES REALLY TRACE THE MOST MASSIVE DARK-MATTER HALOS? DISCOVERY OF A HIGH-z CLUSTER IN A HIGHLY ACTIVE PHASE OF EVOLUTION , 2008, 0809.1159.

[30]  B. Robertson,et al.  High-Redshift Galaxy Kinematics: Constraints on Models of Disk Formation , 2008, 0808.1100.

[31]  Jia-Sheng Huang,et al.  The Physical Scale of the Far-Infrared Emission in the Most Luminous Submillimeter Galaxies , 2008, 0807.2243.

[32]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[33]  F. Walter,et al.  A Molecular Einstein Ring at z = 4.12: Imaging the Dynamics of a Quasar Host Galaxy Through a Cosmic Lens , 2008, 0806.4616.

[34]  Christine D. Wilson,et al.  Luminous Infrared Galaxies with the Submillimeter Array. I. Survey Overview and the Central Gas to Dust Ratio , 2008, 0806.3002.

[35]  G. Illingworth,et al.  Accepted for publication in the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE DETECTION OF A RED SEQUENCE OF MASSIVE FIELD GALAXIES AT Z ∼ 2.3 AND ITS EVOLUTION TO Z ∼ 0 1 , 2022 .

[36]  T. Thompson Gravitational Instability in Radiation Pressure-Dominated Backgrounds , 2008, 0804.3403.

[37]  D. Elbaz,et al.  Observations and modeling of a clumpy galaxy at z = 1.6 - Spectroscopic clues to the origin and evolution of chain galaxies , 2008, 0803.3831.

[38]  Garth D. Illingworth,et al.  Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse , 2008, 0802.4094.

[39]  A. Cimatti,et al.  Kinemetry of SINS High-Redshift Star-Forming Galaxies: Distinguishing Rotating Disks from Major Mergers , 2008, 0802.0879.

[40]  C. Breuck,et al.  Distant radio galaxies and their environments , 2008, 0802.2770.

[41]  A. Cimatti,et al.  Submillimeter Galaxies at z ~ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and CO-H2 Conversion Factor , 2008, 0801.3650.

[42]  H. Ferguson,et al.  A Population of Massive and Evolved Galaxies at z ≳ 5 , 2007, 0710.0406.

[43]  H. Dannerbauer,et al.  Interferometric Detections of GOODS 850-5 at 1 mm and 1.4 GHz , 2007, 0712.3190.

[44]  S. Ravindranath,et al.  Vigorous Star Formation with Low Efficiency in Massive Disk Galaxies at z = 1.5 , 2007, 0711.4995.

[45]  Jonathan P. Williams,et al.  GOODS 850-5: A z > 4 Galaxy Discovered in the Submillimeter? , 2007, 0710.1654.

[46]  Itziar Aretxaga,et al.  Evidence for a Population of High-Redshift Submillimeter Galaxies from Interferometric Imaging , 2007, 0708.1020.

[47]  B. G. Elmegreen,et al.  Rapid Formation of Exponential Disks and Bulges at High Redshift from the Dynamical Evolution of Clump-Cluster and Chain Galaxies , 2007, 0708.0306.

[48]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[49]  Caltech,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: Staged Galaxy Formation and a Model of Mass-dependent Gas Exhaustion , 2007, astro-ph/0703056.

[50]  P. Hopkins,et al.  Formation of z~6 Quasars from Hierarchical Galaxy Mergers , 2006, astro-ph/0608190.

[51]  D. Weinberg,et al.  Breaking the Degeneracies between Cosmology and Galaxy Bias , 2005, astro-ph/0512071.

[52]  J. Dunlop,et al.  From Z-Machines to Alma: (SUB) Millimeter Spectroscopy of Galaxies , 2007 .

[53]  A. Cimatti,et al.  The rapid formation of a large rotating disk galaxy three billion years after the Big Bang , 2006, Nature.

[54]  I. Smail,et al.  Observing Cold Gas in Submillimeter Galaxies: Detection of CO (1→0) Emission in SMM J13120+4242 with the Green Bank Telescope , 2006, astro-ph/0607089.

[55]  F. Walter,et al.  CO(J = 1→0) IN z > 2 QUASAR HOST GALAXIES: NO EVIDENCE FOR EXTENDED MOLECULAR GAS RESERVOIRS , 2006, 1106.2553.

[56]  Caltech,et al.  The Hubble Deep Field-North SCUBA Super-map - IV. Characterizing submillimetre galaxies using deep Spitzer imaging , 2006, astro-ph/0605573.

[57]  A. Renzini Stellar Population Diagnostics of Elliptical Galaxy Formation , 2006, astro-ph/0603479.

[58]  R. Davé,et al.  The Physical and Photometric Properties of High-Redshift Galaxies in Cosmological Hydrodynamic Simulations , 2005, astro-ph/0507719.

[59]  F. Bertoldi,et al.  High-Resolution Millimeter Imaging of Submillimeter Galaxies , 2005 .

[60]  S. M. Fall,et al.  Evidence for a Massive Poststarburst Galaxy at z ~ 6.5 , 2005, astro-ph/0509768.

[61]  P. Solomon,et al.  Molecular Gas at High Redshift , 2005, astro-ph/0508481.

[62]  W. Brandt,et al.  The X-Ray Spectral Properties of SCUBA Galaxies , 2005, astro-ph/0506608.

[63]  A. Weiss,et al.  The Spectral Energy Distribution of CO lines in M82 , 2005, astro-ph/0504377.

[64]  A. Cimatti,et al.  Passively Evolving Early-Type Galaxies at 1.4 ≲ z ≲ 2.5 in the Hubble Ultra Deep Field , 2005, astro-ph/0503102.

[65]  A. Cimatti,et al.  Old galaxies in the young Universe , 2004, Nature.

[66]  F. Bertoldi,et al.  The Faint Counterparts of MAMBO Millimeter Sources near the New Technology Telescope Deep Field , 2004 .

[67]  C. Carilli,et al.  Sensitive VLBI Observations of the z QSO BRI 1202−0725 , 2004, astro-ph/0501134.

[68]  P. Solomon,et al.  HCN Survey of Normal Spiral, Infrared-luminous, and Ultraluminous Galaxies , 2003, astro-ph/0310341.

[69]  J. Dunlop,et al.  Discovery of the galaxy counterpart of HDF 850.1, the brightest submillimetre source in the Hubble Deep Field , 2002, astro-ph/0205480.

[70]  R. Ivison,et al.  Gas and Dust in the Extremely Red Object ERO J164502+4626.4 , 2003, astro-ph/0309213.

[71]  W. Percival,et al.  The formation of cluster elliptical galaxies as revealed by extensive star formation , 2003, Nature.

[72]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[73]  I. Smail,et al.  A median redshift of 2.4 for galaxies bright at submillimetre wavelengths , 2003, Nature.

[74]  S. Djorgovski,et al.  A Molecular Einstein Ring: Imaging a Starburst Disk Surrounding a Quasi-Stellar Object , 2003, Science.

[75]  J. Kneib,et al.  Submillimeter Galaxies , 2002, astro-ph/0202228.

[76]  C. Carilli,et al.  Properties of Millimeter Galaxies: Constraints from K-Band Blank Fields , 2002, astro-ph/0201104.

[77]  D. Flower The rotational excitation of CO by H2 , 2001 .

[78]  M. Yun,et al.  Radio Properties of Infrared-selected Galaxies in the IRAS 2 Jy Sample , 2001, astro-ph/0102154.

[79]  R. H. Pratt,et al.  Correlation effects in the energy spectrum of fast outgoing electrons from double photoionization of helium , 2001 .

[80]  C. L. Carilli,et al.  The Scatter in the Relationship between Redshift and the Radio-to-Submillimeter Spectral Index , 1999, astro-ph/9910316.

[81]  C. Carilli,et al.  Tropospheric phase calibration in millimeter interferometry , 1999, astro-ph/9904248.

[82]  C. Carilli,et al.  Synthesis Imaging in Radio Astronomy II , 1999 .

[83]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[84]  L. Hernquist,et al.  Gasdynamics and starbursts in major mergers , 1995, astro-ph/9512099.

[85]  L. Hernquist,et al.  Fueling Starburst Galaxies with Gas-rich Mergers , 1991 .

[86]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[87]  N. Scoville,et al.  Radiative Transfer, Excitation, and Cooling of Molecular Emission Lines (co and Cs) , 1974 .