A stable SPH with adaptive B-spline kernel

[1]  Ashkan Rafiee,et al.  A simple SPH algorithm for multi‐fluid flow with high density ratios , 2013 .

[2]  Hitoshi Gotoh,et al.  Enhancement of stability and accuracy of the moving particle semi-implicit method , 2011, J. Comput. Phys..

[3]  Debasish Roy,et al.  Stabilized SPH-based simulations of impact dynamics using acceleration-corrected artificial viscosity , 2012 .

[4]  G. R. Johnson,et al.  SPH for high velocity impact computations , 1996 .

[5]  R. P. Ingel,et al.  An approach for tension instability in smoothed particle hydrodynamics (SPH) , 1995 .

[6]  W. Dehnen,et al.  Improving convergence in smoothed particle hydrodynamics simulations without pairing instability , 2012, 1204.2471.

[7]  Sukanta Chakraborty,et al.  A pseudo-spring based fracture model for SPH simulation of impact dynamics , 2013 .

[8]  Lorie M. Liebrock,et al.  SPH hydrocodes can be stabilized with shape-shifting , 1999 .

[9]  G. J. Phillips,et al.  A numerical method for three-dimensional simulations of collapsing, isothermal, magnetic gas clouds , 1985 .

[10]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[11]  Debasish Roy,et al.  Beyond classical dynamic structural plasticity using mesh-free modelling techniques , 2015 .

[12]  Lorie M. Liebrock,et al.  Conservative smoothing with B-splines stabilizes SPH material dynamics in both tension and compression , 2004, Applied Mathematics and Computation.

[13]  Martin W. Heinstein,et al.  An analysis of smoothed particle hydrodynamics , 1994 .

[14]  Joseph J Monaghan,et al.  An introduction to SPH , 1987 .

[15]  J. K. Chen,et al.  An improvement for tensile instability in smoothed particle hydrodynamics , 1999 .

[16]  P. W. Randles,et al.  Normalized SPH with stress points , 2000 .

[17]  Sukanta Chakraborty,et al.  Prognosis for ballistic sensitivity of pre-notch in metallic beam through mesh-less computation reflecting material damage , 2015 .

[18]  I. Schuessler,et al.  Comments on smoothed particle hydrodynamics , 1981 .

[19]  Rushdie Ibne Islam,et al.  On consistency and energy conservation in smoothed particle hydrodynamics , 2018, International Journal for Numerical Methods in Engineering.

[20]  C. Antoci,et al.  Numerical simulation of fluid-structure interaction by SPH , 2007 .

[21]  Salvatore Marrone,et al.  Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows , 2017, Comput. Phys. Commun..

[22]  S. Attaway,et al.  Smoothed particle hydrodynamics stability analysis , 1995 .

[23]  Kamil Szewc,et al.  SPH with dynamical smoothing length adjustment based on the local flow kinematics , 2017, J. Comput. Phys..

[24]  Vishal Mehra,et al.  High velocity impact of metal sphere on thin metallic plates: A comparative smooth particle hydrodynamics study , 2006, J. Comput. Phys..

[25]  T. Rabczuk,et al.  Simulation of high velocity concrete fragmentation using SPH/MLSPH , 2003 .

[26]  Prabhu Ramachandran,et al.  Approximate Riemann solvers for the Godunov SPH (GSPH) , 2014, J. Comput. Phys..

[27]  Rushdie Ibne Islam,et al.  A computational framework for modelling impact induced damage in ceramic and ceramic-metal composite structures , 2017 .

[28]  Sivakumar Kulasegaram,et al.  Remarks on tension instability of Eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods , 2001 .

[29]  J. W. Swegle,et al.  Conservative smoothing versus artificial viscosity , 1994 .

[30]  Peng Yu,et al.  Extension of SPH to simulate non-isothermal free surface flows during the injection molding process , 2019, Applied Mathematical Modelling.

[31]  J. Monaghan,et al.  SPH elastic dynamics , 2001 .

[32]  S. J. Lind,et al.  Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves , 2012, J. Comput. Phys..

[33]  J. Monaghan Smoothed Particle Hydrodynamics and Its Diverse Applications , 2012 .

[34]  Stephen R Reid,et al.  Heuristic acceleration correction algorithm for use in SPH computations in impact mechanics , 2009 .

[35]  Peng Yu,et al.  Modeling and simulation of injection molding process of polymer melt by a robust SPH method , 2017 .

[36]  Ted Belytschko,et al.  A unified stability analysis of meshless particle methods , 2000 .

[37]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[38]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[39]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[40]  Stephen R Reid,et al.  Applications of SPH with the acceleration correction algorithm in structural impact computations , 2009 .

[41]  J. K. Chen,et al.  A corrective smoothed particle method for boundary value problems in heat conduction , 1999 .

[42]  Rushdie Ibne Islam,et al.  A computational model for failure of ductile material under impact , 2017 .

[43]  Peng Yu,et al.  A technique to remove the tensile instability in weakly compressible SPH , 2018 .

[44]  W. Benz,et al.  Simulations of brittle solids using smooth particle hydrodynamics , 1995 .

[45]  J. Monaghan On the problem of penetration in particle methods , 1989 .

[46]  J. Figueira,et al.  SPHYNX: an accurate density-based SPH method for astrophysical applications , 2016, 1607.01698.

[47]  A. Colagrossi,et al.  Prediction of energy losses in water impacts using incompressible and weakly compressible models , 2015 .

[48]  G. Dilts MOVING-LEAST-SQUARES-PARTICLE HYDRODYNAMICS-I. CONSISTENCY AND STABILITY , 1999 .

[49]  Saptarshi Kumar Lahiri,et al.  On performance of different material models in predicting response of ceramics under high velocity impact , 2019, International Journal of Solids and Structures.

[50]  V. Springel Smoothed Particle Hydrodynamics in Astrophysics , 2010, 1109.2219.

[51]  S. W. Attaway,et al.  Conservative smoothing stabilizes discrete-numerical instabilities in SPH material dynamics computations , 1997 .

[52]  Jie Ouyang,et al.  SPH simulations of three-dimensional non-Newtonian free surface flows , 2013 .

[53]  Sukanta Chakraborty,et al.  Crack Propagation in Bi-Material System via Pseudo-Spring Smoothed Particle Hydrodynamics , 2014 .

[54]  Moubin Liu,et al.  A new kernel function for SPH with applications to free surface flows , 2014 .

[55]  J. Monaghan SPH without a Tensile Instability , 2000 .

[56]  R. P. Ingel,et al.  STRESS POINTS FOR TENSION INSTABILITY IN SPH , 1997 .