Analysis of surface roughness and hardness in titanium alloy machining with polycrystalline diamond tool under different lubricating modes

The present work deals with the investigation on machining of difficult-to-machine material titanium alloy (Ti-6Al-4V) using poly crystalline diamond (PCD) tool under different coolant strategies, namely dry, flooded and MQL. Taguchi technique has been employed and the optimization results indicated that MQL lubricating mode with cutting speed of 150 m/min, feed rate of 0.15 mm/rev, nose radius of 0.6 mm and 0.25 mm depth of cut is necessary to minimize surface roughness and dry mode with cutting speed of 150 m/min, feed rate of 0.15 mm/rev, nose radius of 0.6 mm and 0.75 mm depth of cut is necessary to maximize surface hardness. The results indicate the substantial benefit of the minimum quantity of lubrication (MQL) and justify PCD inserts to be the most functionally satisfactory commercially available cutting tool material for machining titanium alloys for better surface finish and hardness.

[1]  K. Srinivasulu,et al.  Performance Evaluation and Selection of Optimal Parameters in Turning of Ti-6 Al-4 V Alloy Under Different Cooling Conditions , 2011 .

[2]  J. Paulo Davim,et al.  Selection of optimal MQL and cutting conditions for enhancing machinability in turning of brass , 2008 .

[3]  Y. Kevin Chou,et al.  Surface hardening of AISI 4340 steel by machining: a preliminary investigation , 2002 .

[4]  Bin Zou,et al.  Study on surface damages caused by turning NiCr20TiAl nickel-based alloy , 2009 .

[5]  T. Harada,et al.  High Speed Cutting of Titanium Alloy with PCD Tools , 2008 .

[6]  Wuyi Chen,et al.  Cutting forces and surface finish when machining medium hardness steel using CBN tools , 2000 .

[7]  N. R. Dhar,et al.  The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel , 2006 .

[8]  Jaime Gilberto Duduch,et al.  Surface integrity of ultra-precision diamond turned Ti (commercially pure) and Ti alloy (Ti-6Al-4V) , 2007 .

[9]  C. Haron,et al.  Taguchi optimization method for surface roughness and material removal rate in turning of Ti-6Al-4V ELI , 2010 .

[10]  N. R. Dhar,et al.  Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil­based cutting fluid , 2009 .

[11]  Álisson Rocha Machado,et al.  The effect of extremely low lubricant volumes in machining , 1997 .

[12]  M.S.J. Hashmi,et al.  Surface roughness prediction model by design of experiments for turning machinable glass–ceramic (Macor) , 2005 .

[13]  J. Lapin,et al.  Microstructure and mechanical properties of a directionally solidified and aged intermetallic Ni–Al–Cr–Ti alloy with β-γ′-γ-α structure , 2000 .

[14]  K. Palanikumar,et al.  Measurement and analysis of surface roughness in turning of aerospace titanium alloy (gr5) , 2012 .

[15]  M. Cakir,et al.  Mathematical modeling of surface roughness for evaluating the effects of cutting parameters and coating material , 2009 .

[16]  Madhan Shridhar Phadke,et al.  Quality Engineering Using Robust Design , 1989 .

[17]  Rosemar Batista da Silva,et al.  Surface integrity of finished turned Ti–6Al–4V alloy with PCD tools using conventional and high pressure coolant supplies , 2007 .

[18]  C. Richard Liu,et al.  MACHINING TITANIUM AND ITS ALLOYS , 1999 .

[19]  João Roberto Ferreira,et al.  Optimization of titanium alloy (6Al–4V) machining , 2003 .

[20]  Emmanuel O. Ezugwu,et al.  High speed machining of aero-engine alloys , 2004 .

[21]  S. Sharif,et al.  SIMULATED ANNEALING TO ESTIMATE THE OPTIMAL CUTTING CONDITIONS FOR MINIMIZING SURFACE ROUGHNESS IN END MILLING Ti-6Al-4V , 2010 .

[22]  H. Takeyama,et al.  Study on Machining of Titanium Alloys , 1983 .

[23]  F. Nabhani Machining of aerospace titanium alloys , 2001 .

[24]  Imtiaz Ahmed Choudhury,et al.  Surface roughness prediction in the turning of high-strength steel by factorial design of experiments , 1997 .

[25]  S. Chauhan,et al.  Machinability Study of Titanium (Grade-5) Alloy Using Design of Experiment Technique , 2011 .

[26]  C. J. Luis Pérez,et al.  Surface roughness prediction by factorial design of experiments in turning processes , 2003 .

[27]  M. S. Shunmugam,et al.  Investigations into surface topography, microhardness and residual stress in Boring Trepanning Association machining , 1987 .

[28]  Ekkard Brinksmeier,et al.  Measurement of optical surfaces generated by diamond turning , 1998 .

[29]  Toshiyuki Obikawa,et al.  Prediction model of surface residual stress within a machined surface by combining two orthogonal plane models , 2004 .

[30]  Kali Dass,et al.  Optimization of Machining Parameters in Turning of Titanium (Grade-5) Alloy Using Response Surface Methodology , 2012 .

[31]  P. Molian,et al.  Lathe Turning of Titanium Using Pulsed Laser Deposited, Ultra‐Hard Boride Coatings of Carbide Inserts , 2003 .

[32]  Chunxiang Cui,et al.  Titanium alloy production technology, market prospects and industry development , 2011 .

[33]  Z. M. Wang,et al.  Titanium alloys and their machinability—a review , 1997 .

[34]  Z. G. Wang,et al.  A Review on High-Speed Machining of Titanium Alloys ∗ , 2006 .

[35]  Stanislaw Legutko,et al.  Influence of cutting parameters and conditions onto surface hardness of Duplex Stainless Steel after turning process , 2013 .

[36]  M. Mori,et al.  High-Speed Machining of Titanium by New PCD Tools , 1999 .

[37]  P. Arrazola,et al.  Machinability of titanium alloys (Ti6Al4V and Ti555.3) , 2009 .

[38]  E. Ezugwu,et al.  Observations of Tool Life and Wear Mechanisms in High Speed Machining of Ti-6Al-4V With PCD Tools Using High Pressure Coolant Supply , 2005 .

[39]  Vishal S. Sharma,et al.  Cooling techniques for improved productivity in turning , 2009 .

[40]  James Marrow,et al.  3D Studies of Indentation by Combined X-Ray Tomography and Digital Volume Correlation , 2013 .

[41]  E. Ezugwu,et al.  Surface abuse when machining cast iron (G-17) and nickel-base superalloy (Inconel 718) with ceramic tools , 1995 .

[42]  Y. Şahin,et al.  Surface roughness model for machining mild steel with coated carbide tool , 2005 .

[43]  M. Yallese,et al.  Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool , 2010 .

[44]  L. N. Harris,et al.  Taguchi techniques for quality engineering, Philip J. Ross, Mcgraw-hill book company, 1988 , 1989 .

[45]  A. Jawaid,et al.  The effect of machining on surface integrity of titanium alloy Ti–6% Al–4% V , 2005 .