A universal filter for enhanced imaging with small arrays

We analyze in detail directivity enhancement in imaging with small arrays of closely spaced sensors, in homogeneous media. Imaging is done with Kirchhoff or travel time migration of the array data after applying an inverse filter that increases the resolution of the image. In general, the construction of such a filter requires invasive measurements on a control array in the vicinity of the object to be imaged, which we assume are not available. The form of the filter is, however, universal when the control array encloses the imaging sensor array. It is the inverse of the finite Fourier transform operator, which has the sinc function as its kernel. We analyze the dependence of resolution enhancement on the signal-to-noise ratio both with narrow and broadband signals.

[1]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[3]  M. Fink,et al.  Time Reversal of Ultrasonic Fields-Part I : Basic Principles , 2000 .

[4]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[5]  K. Wapenaar,et al.  Green's function representations for seismic interferometry , 2006 .

[6]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[7]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[8]  D. Blackstock Fundamentals of Physical Acoustics , 2000 .

[9]  S. Twomey The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements , 1965 .

[10]  T. Tayor,et al.  Design of line-source antenna for narrow beamwidth and low sidelobes , 1955 .

[11]  M. Bertero,et al.  Linear inverse problems with discrete data: II. Stability and regularisation , 1988 .

[12]  D. Slepian Some comments on Fourier analysis, uncertainty and modeling , 1983 .

[13]  J L Thomas,et al.  Optimal focusing by spatio-temporal inverse filter. I. Basic principles. , 2001, The Journal of the Acoustical Society of America.

[14]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[15]  Optimal adaptive focusing through heterogeneous media with the minimally invasive inverse filter. , 2007, The Journal of the Acoustical Society of America.

[16]  Jon F. Claerbout,et al.  Imaging the Earth's Interior , 1985 .

[17]  J. F. Clearbout Imaging the Earth's interior. , 1985 .

[18]  J L Thomas,et al.  Time reversal and the inverse filter. , 2000, The Journal of the Acoustical Society of America.

[19]  G. Papanicolaou,et al.  Optimal waveform design for array imaging , 2007 .

[20]  Liliana Borcea,et al.  Adaptive interferometric imaging in clutter and optimal illumination , 2006 .

[21]  P Leclaire,et al.  Fundamentals of Physical Acoustics , 2002 .

[22]  H. Landau,et al.  Eigenvalue distribution of time and frequency limiting , 1980 .

[23]  Tony F. Chan,et al.  Image processing and analysis - variational, PDE, wavelet, and stochastic methods , 2005 .

[24]  Sebastiano Seatzu A remark on the numerical solution of linear inverse problems with discrete data , 1986 .

[25]  M. Fink,et al.  Time reversal of ultrasonic fields. I. Basic principles , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  E S Ebbini,et al.  Ultrasonic focusing through inhomogeneous media by application of the inverse scattering problem. , 1998, The Journal of the Acoustical Society of America.

[27]  Mario Bertero,et al.  Linear inverse problems with discrete data. I. General formulation and singular system analysis , 1985 .

[28]  W. Steen,et al.  Principles of Optics M. Born and E. Wolf, 7th (expanded) edition, Cambridge University Press, Cambridge, 1999, 952pp. £37.50/US $59.95, ISBN 0-521-64222-1 , 2000 .

[29]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[30]  D. Rhodes,et al.  On the optimum line source for the best mean-square approximation to a given radiation pattern , 1963 .

[31]  Jack K. Cohen,et al.  Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion , 2001 .