Introducing the Data Quality Vocabulary (DQV)

The Data Quality Vocabulary (DQV) provides a metadata model for expressing data quality. DQV was developed by the Data on the Web Best Practice (DWBP) working group of the World Wide Web Consortium (W3C) between 2013 and 2017. This paper aims at providing a deeper understanding of DQV. It introduces its key design principles, main components, and the main discussion points that have been raised in the process of designing it. The paper compares DQV with previous quality documentation vocabularies and demonstrates the early uptake of DQV by collecting tools, papers, projects that have exploited and extended DQV.

[1]  Jürgen Umbrich,et al.  Data Integration for Open Data on the Web , 2017, Reasoning Web.

[2]  Miroslaw Staron,et al.  Theta Architecture: Preserving the Quality of Analytics in Data-Driven Systems , 2017, ADBIS.

[3]  Niklas Elmqvist,et al.  Keshif: Rapid and Expressive Tabular Data Exploration for Novices , 2018, IEEE Transactions on Visualization and Computer Graphics.

[4]  Christoph Lange,et al.  Representing dataset quality metadata using multi-dimensional views , 2014, SEM '14.

[5]  Julian Szymanski,et al.  RDF dataset profiling - a survey of features, methods, vocabularies and applications , 2018, Semantic Web.

[6]  Steven Pemberton Web Annotation Vocabulary , 2017 .

[7]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[8]  Christoph Lange,et al.  Luzzu -- A Framework for Linked Data Quality Assessment , 2016, 2016 IEEE Tenth International Conference on Semantic Computing (ICSC).

[9]  Jens Lehmann,et al.  Quality assessment for Linked Data: A Survey , 2015, Semantic Web.

[10]  Jürgen Umbrich,et al.  Lifting Data Portals to the Web of Data , 2017, LDOW@WWW.

[11]  Christoph Lange,et al.  Evaluating the quality of the LOD cloud: An empirical investigation , 2018, Semantic Web.

[12]  Riccardo Albertoni,et al.  Quality measures for skos: ExactMatch linksets: an application to the thesaurus framework LusTRE , 2018, Data Technol. Appl..

[13]  Marco Torchiano,et al.  A quality assessment approach for evolving knowledge bases , 2019, Semantic Web.

[14]  Stefan Schlobach,et al.  Literally better: Analyzing and improving the quality of literals , 2017, Semantic Web.

[15]  Andreas Abecker,et al.  LusTRE: a framework of linked environmental thesauri for metadata management , 2018, Earth Science Informatics.

[16]  Alfonso Quarati,et al.  Documenting Context-Based Quality Assessment of Controlled Vocabularies , 2018, IEEE Transactions on Emerging Topics in Computing.

[17]  Armin Haller,et al.  Best practices for publishing, retrieving, and using spatial data on the web , 2018, Semantic Web.

[18]  Deborah L. McGuinness,et al.  PROV-O: The PROV Ontology , 2013 .

[19]  Christoph Lange,et al.  daQ, an Ontology for Dataset Quality Information , 2014, LDOW.

[20]  Martin Hepp,et al.  Towards a vocabulary for data quality management in semantic web architectures , 2011, LWDM '11.

[21]  Sean Bechhofer,et al.  SKOS Simple Knowledge Organization System Reference , 2009 .

[22]  Antoine Isaac,et al.  Finding Quality Issues in SKOS Vocabularies , 2012, TPDL.

[23]  Dimitris Kontokostas,et al.  Validating RDF Data , 2017, Validating RDF Data.

[24]  Markus Freudenberg,et al.  Enabling Combined Software and Data Engineering at Web-Scale: The ALIGNED Suite of Ontologies , 2016, SEMWEB.

[25]  Nandana Mihindukulasooriya,et al.  A comprehensive quality model for Linked Data , 2018, Semantic Web.