How two-foot molecular motors may walk.

[1]  J. Telleria [Mechanism of muscular contraction]. , 1951, Medicina.

[2]  A Mehta,et al.  Myosin learns to walk. , 2001, Journal of cell science.

[3]  Matthias Rief,et al.  Myosin-V is a processive actin-based motor , 1999, Nature.

[4]  S. Ishiwata,et al.  Right-handed rotation of an actin filament in an in vitro motile system , 1993, Nature.

[5]  Hiroyasu Itoh,et al.  Rotation of F1-ATPase: how an ATP-driven molecular machine may work. , 2004, Annual review of biophysics and biomolecular structure.

[6]  Hiroto Tanaka,et al.  The motor domain determines the large step of myosin-V , 2002, Nature.

[7]  A. Houdusse,et al.  Three conformational states of scallop myosin S1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[8]  S. Rosenfeld,et al.  The unique insert in myosin VI is a structural calcium-calmodulin binding site. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Toshio Yanagida,et al.  Class VI myosin moves processively along actin filaments backward with large steps. , 2002, Biochemical and biophysical research communications.

[10]  S. Ishiwata,et al.  Rotational motions of myosin heads in myofibril studied by phosphorescence anisotropy decay measurements. , 1987, The Journal of biological chemistry.

[11]  Justin E. Molloy,et al.  The gated gait of the processive molecular motor, myosin V , 2002, Nature Cell Biology.

[12]  Amber L. Wells,et al.  Myosin VI is a processive motor with a large step size , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Mehta,et al.  Myosin-V stepping kinetics: a molecular model for processivity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  A. Houdusse,et al.  Atomic Structure of Scallop Myosin Subfragment S1 Complexed with MgADP A Novel Conformation of the Myosin Head , 1999, Cell.

[15]  J. Gelles,et al.  Distinguishing Inchworm and Hand-Over-Hand Processive Kinesin Movement by Neck Rotation Measurements , 2002, Science.

[16]  J. Sellers,et al.  The prepower stroke conformation of myosin V , 2002, The Journal of cell biology.

[17]  Kazuhiko Kinosita,et al.  F1-ATPase: A Rotary Motor Made of a Single Molecule , 1998, Cell.

[18]  R. Vale,et al.  Kinesin Walks Hand-Over-Hand , 2004, Science.

[19]  Hiroyasu Itoh,et al.  Unconstrained steps of myosin VI appear longest among known molecular motors. , 2004, Biophysical journal.

[20]  T. Ando,et al.  Direct observation of processive movement by individual myosin V molecules. , 2000, Biochemical and biophysical research communications.

[21]  Rasmus R. Schröder,et al.  Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide , 2003, Nature.

[22]  K. Holmes,et al.  The structural basis of muscle contraction. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[23]  M. Schliwa,et al.  Molecular motors , 2003, Nature.

[24]  Manfred Schliwa,et al.  Molecular motors , 2003, Nature.

[25]  R. Vale,et al.  The way things move: looking under the hood of molecular motor proteins. , 2000, Science.

[26]  Hiroyasu Itoh,et al.  Myosin V is a left-handed spiral motor on the right-handed actin helix , 2002, Nature Structural Biology.

[27]  Daniel Safer,et al.  Myosin VI is an actin-based motor that moves backwards , 1999, Nature.

[28]  I. Sase,et al.  Axial rotation of sliding actin filaments revealed by single-fluorophore imaging. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Carl A. Morris,et al.  A structural state of the myosin V motor without bound nucleotide , 2003, Nature.

[30]  Steven M. Block,et al.  Kinesin Moves by an Asymmetric Hand-OverHand Mechanism , 2003 .

[31]  R Vale,et al.  Thermodynamic properties of the kinesin neck-region docking to the catalytic core. , 2003, Biophysical journal.

[32]  E. Mandelkow,et al.  The Crystal Structure of Dimeric Kinesin and Implications for Microtubule-Dependent Motility , 1997, Cell.

[33]  Yale E. Goldman,et al.  Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization , 2003, Nature.

[34]  J. Howard,et al.  The movement of kinesin along microtubules. , 1996, Annual review of physiology.

[35]  S. Endow,et al.  Processive and nonprocessive models of kinesin movement. , 2003, Annual review of physiology.

[36]  P. Forscher,et al.  Brain myosin-V is a two-headed unconventional myosin with motor activity , 1993, Cell.

[37]  Shin'ichi Ishiwata,et al.  Loading direction regulates the affinity of ADP for kinesin , 2003, Nature Structural Biology.

[38]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[39]  David M. Warshaw,et al.  Myosin V exhibits a high duty cycle and large unitary displacement , 2001, The Journal of cell biology.

[40]  R. Vale Myosin V motor proteins , 2003, The Journal of cell biology.

[41]  W. Kabsch,et al.  Atomic model of the actin filament , 1990, Nature.

[42]  John Trinick,et al.  Two-headed binding of a processive myosin to F-actin , 2000, Nature.

[43]  E. Katayama,et al.  Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity , 2003, The EMBO journal.

[44]  László Nyitray,et al.  Visualization of an unstable coiled coil from the scallop myosin rod , 2003, Nature.

[45]  H E Huxley,et al.  The Mechanism of Muscular Contraction , 1965, Scientific American.

[46]  Kazuhiko Kinosita,et al.  Submicrosecond and microsecond rotational motions of myosin head in solution and in myosin synthetic filaments as revealed by time-resolved optical anisotropy decay measurements , 1984 .

[47]  Masasuke Yoshida,et al.  F 1-ATPase Is a Highly Efficient Molecular Motor that Rotates with Discrete 120 8 Steps , 1998 .

[48]  Mitsuo Ikebe,et al.  The core of the motor domain determines the direction of myosin movement , 2001, Nature.