Synergetic enhancement of sodium storage in gallium-based heterostructures

[1]  S. Passerini,et al.  Reversible Copper Sulfide Conversion in Nonflammable Trimethyl Phosphate Electrolytes for Safe Sodium‐Ion Batteries , 2021, Small Structures.

[2]  Yan Yu,et al.  Gallium-based anodes for alkali metal ion batteries , 2021 .

[3]  Xunhui Xiong,et al.  Facile synthesis of uniform N-doped carbon-coated TiO2 hollow spheres with enhanced lithium storage performance. , 2021, Nanoscale.

[4]  Z. Yin,et al.  Nano Polymorphism‐Enabled Redox Electrodes for Rechargeable Batteries , 2020, Advances in Materials.

[5]  Chunshuang Yan,et al.  Rational design of vanadium chalcogenides for sodium-ion batteries , 2020 .

[6]  Huan Ye,et al.  Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries , 2020 .

[7]  Z. Yin,et al.  Synergizing Phase and Cavity in CoMoOx Sy Yolk-Shell Anodes to Co-Enhance Capacity and Rate Capability in Sodium Storage. , 2020, Small.

[8]  Xiaoxin Song,et al.  China's coal consumption in a globalizing world: Insights from Multi-Regional Input-Output and structural decomposition analysis. , 2020, The Science of the total environment.

[9]  Yanbin Shen,et al.  TiC/C core/shell nanowires arrays as advanced anode of sodium ion batteries , 2020 .

[10]  Xunhui Xiong,et al.  Facile and efficient fabrication of Li3PO4-coated Ni-rich cathode for high-performance lithium-ion battery , 2020 .

[11]  K. Kang,et al.  Nanoscale Phenomena in Lithium-Ion Batteries. , 2019, Chemical reviews.

[12]  Cyrus S. Rustomji,et al.  High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes , 2019, Joule.

[13]  Shaojun Guo,et al.  A 3D Trilayered CNT/MoSe2/C Heterostructure with an Expanded MoSe2 Interlayer Spacing for an Efficient Sodium Storage , 2019, Advanced Energy Materials.

[14]  M. Seong,et al.  Simultaneous growth of Ga2S3 and GaS thin films using physical vapor deposition with GaS powder as a single precursor , 2019, Nanotechnology.

[15]  Rusen Yang,et al.  Nonlayered Two-Dimensional Defective Semiconductor γ-Ga2S3 toward Broadband Photodetection. , 2019, ACS nano.

[16]  Chade Lv,et al.  Electric field effect in a Co3O4/TiO2 p–n junction for superior lithium-ion storage , 2019, Materials Chemistry Frontiers.

[17]  Yi Cui,et al.  Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries , 2019, Chem.

[18]  Hongyu Guan,et al.  Precisely controlled preparation of an advanced Na3V2(PO4)2O2F cathode material for sodium ion batteries: the optimization of electrochemical properties and electrode kinetics , 2019, Inorganic Chemistry Frontiers.

[19]  Xifei Li,et al.  Unique Double-Interstitialcy Mechanism and Interfacial Storage Mechanism in the Graphene/Metal Oxide as the Anode for Sodium-Ion Batteries. , 2019, Nano letters.

[20]  Venkat R. Subramanian,et al.  Pathways for practical high-energy long-cycling lithium metal batteries , 2019, Nature Energy.

[21]  Dalin Sun,et al.  Exploring the sodium ion storage mechanism of gallium sulfide (Ga2S3): a combined experimental and theoretical approach. , 2019, Nanoscale.

[22]  Yan Yu,et al.  Peering into Alloy Anodes for Sodium‐Ion Batteries: Current Trends, Challenges, and Opportunities , 2019, Advanced Functional Materials.

[23]  Baodan Liu,et al.  Hydrothermal Approach to Spinel-Type 2D Metal Oxide Nanosheets. , 2018, Inorganic chemistry.

[24]  M. Winter,et al.  Before Li Ion Batteries. , 2018, Chemical reviews.

[25]  Xiaobo Ji,et al.  Hierarchical Hollow‐Microsphere Metal–Selenide@Carbon Composites with Rational Surface Engineering for Advanced Sodium Storage , 2018, Advanced Energy Materials.

[26]  Shao-Hung Wang,et al.  DST659 genotype of Candida albicans showing positive association between biofilm formation and dominance in Taiwan , 2018, Medical mycology.

[27]  W. Mai,et al.  Rational design of metal organic framework-derived FeS2 hollow nanocages@reduced graphene oxide for K-ion storage. , 2018, Nanoscale.

[28]  Wenli Zhang,et al.  Solution synthesis of VSe2 nanosheets and their alkali metal ion storage performance , 2018, Nano Energy.

[29]  Tailin Wang,et al.  Graphene-Oxide-Assisted Synthesis of Ga2O3 Nanosheets/Reduced Graphene Oxide Nanocomposites Anodes for Advanced Alkali-Ion Batteries , 2018, ACS Applied Energy Materials.

[30]  M Rosa Palacín,et al.  Understanding ageing in Li-ion batteries: a chemical issue. , 2018, Chemical Society reviews.

[31]  Yuliang Cao,et al.  Recent Advances in Sodium-Ion Battery Materials , 2018, Electrochemical Energy Reviews.

[32]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[33]  Yan Yu,et al.  Cobalt Sulfide Quantum Dot Embedded N/S-Doped Carbon Nanosheets with Superior Reversibility and Rate Capability for Sodium-Ion Batteries. , 2017, ACS nano.

[34]  J. Coleman,et al.  Enabling Flexible Heterostructures for Li-Ion Battery Anodes Based on Nanotube and Liquid-Phase Exfoliated 2D Gallium Chalcogenide Nanosheet Colloidal Solutions. , 2017, Small.

[35]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[36]  Yang‐Kook Sun,et al.  The Application of Metal Sulfides in Sodium Ion Batteries , 2017 .

[37]  C. Ho,et al.  Synthesis of In2S3 and Ga2S3 crystals for oxygen sensing and UV photodetection , 2016 .

[38]  Yan Yu,et al.  Superior Sodium Storage in Na2Ti3O7 Nanotube Arrays through Surface Engineering , 2016 .

[39]  Maher F. El-Kady,et al.  Graphene for batteries, supercapacitors and beyond , 2016 .

[40]  Zaiping Guo,et al.  Boosted Charge Transfer in SnS/SnO2 Heterostructures: Toward High Rate Capability for Sodium-Ion Batteries. , 2016, Angewandte Chemie.

[41]  S. Adams,et al.  Unique Cobalt Sulfide/Reduced Graphene Oxide Composite as an Anode for Sodium-Ion Batteries with Superior Rate Capability and Long Cycling Stability. , 2016, Small.

[42]  Jilei Liu,et al.  MoS2 nanosheets decorated Ni3S2@MoS2 coaxial nanofibers: Constructing an ideal heterostructure for enhanced Na-ion storage , 2016 .

[43]  K. Amine,et al.  Prelithiation Activates Li(Ni0.5Mn0.3Co0.2)O2 for High Capacity and Excellent Cycling Stability. , 2015, Nano letters (Print).

[44]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[45]  D. Jung,et al.  Lithium storage characteristics of a new promising gallium selenide anodic material , 2014 .

[46]  Chunhua Han,et al.  Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. , 2014, Nano letters.

[47]  T. Onuma,et al.  Polarized Raman spectra in β-Ga2O3 single crystals , 2014 .

[48]  Michael Wörle,et al.  Monodisperse Colloidal Gallium Nanoparticles: Synthesis, Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion Storage , 2014, Journal of the American Chemical Society.

[49]  Qiaobao Zhang,et al.  Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries , 2014 .

[50]  Yunhui Huang,et al.  Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors , 2013 .

[51]  Hiroshi Senoh,et al.  Gallium (III) sulfide as an active material in lithium secondary batteries , 2011 .

[52]  Yunlong Zhao,et al.  Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. , 2010, Nano letters.

[53]  Yan Yu,et al.  Metal Chalcogenides: Paving the Way for High‐Performance Sodium/Potassium‐Ion Batteries , 2019, Small Methods.