Salamanders in Regeneration Research

Regeneration is studied in a few model species of salamanders, but the ten families of salamanders show considerable variation, and this has implications for our understanding of salamander biology. The most recent classifi cation of the families identifi es the cryptobranchoidea as the basal group which diverged in the early Jurassic. Variation in the sizes of genomes is particularly obvious, and refl ects a major contribution from transposable elements which is already present in the basal group. Limb development has been a focus for evodevo studies, in part because of the variable property of pre-axial dominance which distinguishes salamanders from other tetrapods. This is thought to refl ect the selective pressures that operate on a free-living aquatic larva, and might also be relevant for the evolution of limb regeneration. Recent fossil evidence suggests that both pre-axial dominance and limb regeneration were present 300 million years ago in larval temnospondyl amphibians that lived in mountain lakes. A satisfying account of regeneration in salamanders may need to address all these different aspects in the future.

[1]  P. Murawala,et al.  Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination , 2014, Nature Protocols.

[2]  P. Khan,et al.  Development of Notophthalmus viridescens embryos , 1995, Development, growth & differentiation.

[3]  D. Stocum,et al.  Extending the table of stages of normal development of the axolotl: Limb development , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[4]  N. Moreno,et al.  Spatiotemporal Patterns of Pax3, Pax6, and Pax7 Expression in the Developing Brain of a Urodele Amphibian, Pleurodeles waltl , 2013, The Journal of comparative neurology.

[5]  C. Houillon,et al.  Concanavalin A binding to amphibian embryo and effect on morphogenesis. , 1979, Journal of embryology and experimental morphology.

[6]  H. Schleich,et al.  Amphibians and reptiles of North Africa: Biology, systematics, field guide , 1996 .

[7]  P. Rougé,et al.  Neural induction and the structure of the target cell surface. , 1982, Journal of embryology and experimental morphology.

[8]  H. Spemann,et al.  über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren , 1924, Archiv für mikroskopische Anatomie und Entwicklungsmechanik.

[9]  N. Moreno,et al.  Ontogeny of choline acetyltransferase (ChAT) immunoreactivity in the brain of the urodele amphibian Pleurodeles waltl. , 2003, Brain research. Developmental brain research.

[10]  M. Kirkham,et al.  Progenitor Cell Dynamics in the Newt Telencephalon during Homeostasis and Neuronal Regeneration , 2014, Stem cell reports.

[11]  N. Moreno,et al.  Development of NADPH-diaphorase/nitric oxide synthase in the brain of the urodele amphibian Pleurodeles waltl , 2002, Journal of Chemical Neuroanatomy.

[12]  M. Kirkham,et al.  Husbandry of Spanish ribbed newts (Pleurodeles waltl). , 2015, Methods in molecular biology.

[13]  Christine J. Wong,et al.  Limb developmental stages of the newt Notophthalmus viridescens. , 2005, The International journal of developmental biology.

[14]  D. Wake,et al.  Paedomorphosis and simplification in the nervous system of salamanders. , 1993, Brain, behavior and evolution.

[15]  G. Eagleson Developmental neurobiology of the anterior areas in amphibians: urodele perspectives. , 1996, The International journal of developmental biology.

[16]  W. Smeets,et al.  Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii , 1991, The Journal of comparative neurology.

[17]  D. Knapp,et al.  Axolotl (Ambystoma mexicanum) embryonic transplantation methods. , 2009, Cold Spring Harbor protocols.

[18]  P. Ferretti Re-examining jaw regeneration in urodeles: what have we learnt? , 1996, The International journal of developmental biology.

[19]  G. Malacinski,et al.  Developmental Biology of the Axolotl , 1989 .

[20]  Shoji Tane,et al.  Molecular genetic system for regenerative studies using newts , 2013, Development, growth & differentiation.

[21]  P. Nieuwkoop What are the key advantages and disadvantages of urodele species compared to anurans as a model system for experimental analysis of early development? , 1996, The International journal of developmental biology.

[22]  J. Steel Anatomy and the Problem of Behaviour , 1929 .

[23]  W. Smeets,et al.  Development of catecholamine systems in the central nervous system of the newt Pleurodeles waltlii as revealed by tyrosine hydroxylase immunohistochemistry , 1995, The Journal of comparative neurology.

[24]  J. Clarke,et al.  Initiation and control of swimming in amphibian embryos. , 1983, Symposia of the Society for Experimental Biology.

[25]  S. Voss,et al.  Ambystoma mexicanum, the axolotl: a versatile amphibian model for regeneration, development, and evolution studies. , 2009, Cold Spring Harbor protocols.

[26]  D. Stocum,et al.  Urodele spinal cord regeneration and related processes , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[27]  M. Kirkham,et al.  Efficient regeneration by activation of neurogenesis in homeostatically quiescent regions of the adult vertebrate brain , 2010, Development.

[28]  M. Kirkham,et al.  Dopamine controls neurogenesis in the adult salamander midbrain in homeostasis and during regeneration of dopamine neurons. , 2011, Cell stem cell.

[29]  Anoop Kumar,et al.  Appendage Regeneration in Adult Vertebrates and Implications for Regenerative Medicine , 2005, Science.

[30]  A. Nollert,et al.  Die Amphibien Europas. Bestimmung - Gefahrdung - Schutz , 1992 .

[31]  R. Griffiths Newts and Salamanders of Europe , 1996 .

[32]  D. Shi,et al.  The chronological development of the urodele amphibian Pleurodeles waltl (Michah). , 1995, The International journal of developmental biology.

[33]  A. Milla,et al.  Anfibios españoles: identificación, historia natural y distribución , 2001 .

[34]  A. Duprat,et al.  Pleurodeles waltl, amphibian, Urodele, is a suitable biological model for embryological and physiological space experiments on a vertebrate. , 2001, Advances in space research : the official journal of the Committee on Space Research.

[35]  G. Roth,et al.  How do Ontogeny, Morphology, and Physiology of Sensory Systems Constrain and Direct the Evolution of Amphibians? , 1992, The American Naturalist.

[36]  Maritta Schuez,et al.  Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. , 2014, Cell stem cell.

[37]  M. Kirkham,et al.  Microglia activation during neuroregeneration in the adult vertebrate brain , 2011, Neuroscience Letters.

[38]  E. Arenas,et al.  Midbrain dopaminergic neurogenesis and behavioural recovery in a salamander lesion-induced regeneration model , 2007, Development.

[39]  J. Holtfreter Der Einfluss von Wirtsalter und verschiedenen Organbezirken auf die Differenzierung von angelagertem Gastrulaektoderm , 1933, Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen.

[40]  E. Tanaka,et al.  Limb regeneration: a new development? , 2011, Annual review of cell and developmental biology.

[41]  H. Spemann Die Erzeugung tierischer Chimären durch heteroplastische embryonale Transplantation zwischen Triton cristatus und taeniatus , 1921, Archiv für Entwicklungsmechanik der Organismen.

[42]  A. Salvador Gallipato - Pleurodeles waltl Michahelles, 1830 , 2014 .

[43]  J. Clarke,et al.  Swimming and other centrally generated motor patterns in newt embryos , 1983, Journal of comparative physiology.

[44]  N. Moreno,et al.  Regional distribution of calretinin and calbindin-D28k expression in the brain of the urodele amphibian Pleurodeles waltl during embryonic and larval development , 2012, Brain Structure and Function.