Evaluation of SCIAMACHY ESA/DLR Cloud Parameters Version 5.02 by Comparisons to Ground-Based and Other Satellite Data

This paper reports on the evaluation of long-term cloud products as retrieved from measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument with the DLR/ESA processor in its version 5.02 and the operational implementation of the Semi-Analytical CloUd Retrieval Algorithm SACURA. The comparison is performed against spaceborne and ground-based cloud data. The satellite records are the SCIAMACHY/SACURA in its scientific implementation and the Global retrieval of ATSR cloud parameters and evaluation (GRAPE) data set, in its version 3.2, generated for the nadir view of the Advanced Along-Track Scanning Radiometer (AATSR) instrument onboard ENVISAT. Ground-based data are derived from profiles of micro-pulse lidars, continuously operated at three Atmospheric Radiation Measurement (ARM) research facilities. They are, namely, North Slope Alaska, Southern Great Plains and Tropical Western Pacific-Nauru, located in three different latitude belts. It has been found that SCIAMACHY cloud top heights, inferred in the visible-near infrared, have a seasonal dependent overestimation in range 0.6 – 1.0 km when compared to the thermal infrared-derived AATSR cloud top heights. The comparison with the in-situ cloud retrievals reveals that SCIAMACHY cloud altitudes are more accurate for local cloud cover values > 0.6.

[1]  D. Loyola,et al.  OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B , 2015 .

[2]  V. V. Rozanov,et al.  Linear trends in cloud top height from passive observations in the oxygen A-band , 2013 .

[3]  Piet Stammes,et al.  Evaluation of SCIAMACHY Oxygen A band cloud heights using Cloudnet measurements , 2014 .

[4]  Vladimir V. Rozanov,et al.  The determination of cloud altitudes using SCIAMACHY onboard ENVISAT , 2004, IEEE Geoscience and Remote Sensing Letters.

[5]  Jianjun Liu,et al.  Opposite effects of absorbing aerosols on the retrievals of cloud optical depth from spaceborne and ground‐based measurements , 2014 .

[6]  Alexander Marshak,et al.  View angle dependence of cloud optical thicknesses retrieved by Moderate Resolution Imaging Spectroradiometer (MODIS) , 2007 .

[7]  John C. Gille,et al.  Algorithm Theoretical Basis Document , 1999 .

[8]  A. Kokhanovsky,et al.  Synergetic cloud fraction determination for SCIAMACHY using MERIS , 2010 .

[9]  Diego G. Loyola,et al.  Automatic cloud analysis from polar-orbiting satellites using neural network and data fusion techniques , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[10]  John P. Burrows,et al.  SCIAMACHY—scanning imaging absorption spectrometer for atmospheric chartography , 1992 .

[11]  A. Kokhanovsky,et al.  Determination of the cloud fraction in the SCIAMACHY ground scene using MERIS spectral measurements , 2009 .

[12]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[13]  Vladimir V. Rozanov,et al.  Determination of Cloud Optical Thickness Over Snow Using Satellite Measurements in the Oxygen A-Band , 2013, IEEE Geoscience and Remote Sensing Letters.

[14]  E. Atlas,et al.  Modeling the transport of very short-lived substances into the tropical upper troposphere and lower stratosphere , 2009 .

[15]  Tamás Várnai,et al.  View angle dependence of cloud optical thicknesses retrieved by MODIS , 2005 .

[16]  U. Schumann,et al.  The influence of broken cloudiness on cloud top height retrievals using nadir observations of backscattered solar radiation in the oxygen A-band , 2007 .

[17]  Vladimir V. Rozanov,et al.  The determination of cloud altitudes using GOME reflectance spectra: multilayered cloud systems , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[18]  J. Fischer,et al.  Detection of Cloud-Top Height from Backscattered Radiances within the Oxygen A Band. Part 1: Theoretical Study. , 1991 .

[19]  Zhanqing Li,et al.  Long-term impacts of aerosols on the vertical development of clouds and precipitation , 2011 .

[20]  Adrian Doicu,et al.  Information Content in the Oxygen $A$-Band for the Retrieval of Macrophysical Cloud Parameters , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Eleonora P. Zege,et al.  A semianalytical cloud retrieval algorithm using backscattered radiation in 0.4–2.4 μm spectral region , 2003 .

[22]  Oleg A. Krasnov,et al.  Continuous Evaluation of Cloud Profiles in Seven Operational Models Using Ground-Based Observations , 2007 .

[23]  M. Dubey,et al.  Satellite remote sensing of aerosols generated by the Island of Nauru , 2006 .

[24]  John P. Burrows,et al.  The Intercomparison of Cloud Parameters Derived Using Multiple Satellite Instruments , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Tim Appelhans,et al.  An evaluation of a semi-analytical cloud property retrieval using MSG SEVIRI, MODIS and CloudSat , 2013 .

[26]  Richard Siddans,et al.  Cloud retrievals from satellite data using optimal estimation: evaluation and application to ATSR , 2011 .

[27]  Steven Platnick,et al.  Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms , 2014 .

[28]  John P. Burrows,et al.  Linear trends in cloud top height from passive observations in the oxygen A-band , 2013 .

[29]  Vladimir V. Rozanov,et al.  Determination of cloud geometrical thickness using backscattered solar light in a gaseous absorption band , 2006, IEEE Geoscience and Remote Sensing Letters.

[30]  John P. Burrows,et al.  The semianalytical cloud retrieval algorithm for SCIAMACHY I. The validation , 2005 .

[31]  D. Hartmann,et al.  Spatial variability of liquid water path in marine low cloud : Part II . Geographic distribution and dependence upon large-scale parameters , 2004 .

[32]  D. Wark,et al.  On Cloud-Top Determination from Gemini-5. , 1967 .

[33]  R. Rifkin Information content. , 1981, Circulation.

[34]  Jörg Bendix,et al.  The intercomparison of selected cloud retrieval algorithms , 2005 .

[35]  A. Kokhanovsky,et al.  The physical parameterization of the top-of-atmosphere reflection function for a cloudy atmosphere—underlying surface system: the oxygen A-band case study , 2004 .

[36]  Kenneth Sassen,et al.  Cloud Type and Macrophysical Property Retrieval Using Multiple Remote Sensors , 2001 .

[37]  H. Chepfer,et al.  Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel , 2013 .

[38]  John P. Burrows,et al.  Seven years of global retrieval of cloud properties using space-borne data of GOME , 2011 .

[39]  Makoto Kuji,et al.  Retrieval of cloud geometrical parameters using remote sensing data , 2001, SPIE Asia-Pacific Remote Sensing.

[40]  Michael Eisinger,et al.  The Global Ozone Monitoring Experiment ( GOME ) : Mission Concept and First Scienti c , 1999 .

[41]  C. O'Dowd,et al.  Flood or Drought: How Do Aerosols Affect Precipitation? , 2008, Science.

[42]  J. Burrows,et al.  Total ozone during the unusual Antarctic winter of 2002 , 2003 .

[43]  R. Wood,et al.  Spatial variability of liquid water path in marine low cloud : The importance of mesoscale cellular convection , 2006 .

[44]  Vladimir V. Rozanov,et al.  The average number of photon scattering events in vertically inhomogeneous atmospheres , 2005 .

[45]  John P. Burrows,et al.  The cloud phase discrimination from a satellite , 2006, IEEE Geoscience and Remote Sensing Letters.

[46]  Irina Nikolaevna Melʹnikova,et al.  Short-wave solar radiation in the earth's atmosphere : calculation, oberservation, interpretation , 2005 .

[47]  A. Kokhanovsky,et al.  Semianalytical cloud retrieval algorithm as applied to the cloud top altitude and the cloud geometrical thickness determination from top‐of‐atmosphere reflectance measurements in the oxygen A band , 2004 .

[48]  Michael Buchwitz,et al.  The Global Ozone Monitoring Experiment (Gome) : Mission, instrument concept, and first scientific results , 1997 .

[49]  Thomas Ruppert,et al.  A new PMD cloud-recognition algorithm for GOME , 1998 .

[50]  M. V. Roozendael,et al.  FRESCO+: an improved O 2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals , 2008 .

[51]  Philip Watts,et al.  Global retrieval of ATSR cloud parameters and evaluation (GRAPE): dataset assessment , 2010 .

[52]  John P. Burrows,et al.  Intercomparison of cloud top altitudes as derived using GOME and ATSR-2 instruments onboard ERS-2 , 2006 .

[53]  F. Saiedy,et al.  Cloud-Top Altitude Measurements from Satellites , 1965 .

[54]  Anthony B. Davis,et al.  Toward New Inferences about Cloud Structures from Multidirectional Measurements in the Oxygen A Band: Middle-of-Cloud Pressure and Cloud Geometrical Thickness from POLDER-3/PARASOL , 2010 .

[55]  M. Chipperfield,et al.  Impact of deep convection and dehydration on bromine loading in the upper troposphere and lower stratosphere , 2011 .

[56]  Michael Buchwitz,et al.  The semianalytical cloud retrieval algorithm for SCIAMACHY II. The application to MERIS and SCIAMACHY data , 2006 .

[57]  Jianglong Zhang,et al.  Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS , 2014 .