A Kernel Independence Test for Random Processes

A non-parametric approach to the problem of testing the independence of two random processes is developed. The test statistic is the Hilbert-Schmidt Independence Criterion (HSIC), which was used previously in testing independence for i.i.d. pairs of variables. The asymptotic behaviour of HSIC is established when computed from samples drawn from random processes. It is shown that earlier bootstrap procedures which worked in the i.i.d. case will fail for random processes, and an alternative consistent estimate of the p-values is proposed. Tests on artificial data and real-world forex data indicate that the new test procedure discovers dependence which is missed by linear approaches, while the earlier bootstrap procedure returns an elevated number of false positives.

[1]  W. Hoeffding The strong law of large numbers for u-statistics. , 1961 .

[2]  L. Schmetterer Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .

[3]  L. Haugh Checking the Independence of Two Covariance-Stationary Time Series: A Univariate Residual Cross-Correlation Approach , 1976 .

[4]  K. Yoshihara Limiting behavior of U-statistics for stationary, absolutely regular processes , 1976 .

[5]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[6]  M. Denker,et al.  On U-statistics and v. mise’ statistics for weakly dependent processes , 1983 .

[7]  P. Robinson Consistent Nonparametric Entropy-Based Testing , 1991 .

[8]  B. E. Wahlen,et al.  A nonparametric measure of independence under a hypothesis of independent components , 1992 .

[9]  A. Feuerverger,et al.  A Consistent Test for Bivariate Dependence , 1993 .

[10]  P. Doukhan Mixing: Properties and Examples , 1994 .

[11]  B. LeBaron,et al.  A test for independence based on the correlation dimension , 1996 .

[12]  Yongmiao Hong Testing for independence between two covariance stationary time series , 1996 .

[13]  M. A. Arcones The Law of Large Numbers for $U$-statistics Under Absolute Regularity , 1998 .

[14]  J. Pinkse A consistent nonparametric test for serial independence , 1998 .

[15]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[16]  E. Oja,et al.  Independent Component Analysis , 2013 .

[17]  Erkki Oja,et al.  Independent Component Analysis Aapo Hyvärinen, Juha Karhunen, , 2004 .

[18]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[19]  E. Maasoumi,et al.  A Dependence Metric for Possibly Nonlinear Processes , 2004 .

[20]  Bernhard Schölkopf,et al.  Measuring Statistical Dependence with Hilbert-Schmidt Norms , 2005, ALT.

[21]  R. C. Bradley Basic properties of strong mixing conditions. A survey and some open questions , 2005, math/0511078.

[22]  H. White,et al.  ASYMPTOTIC DISTRIBUTION THEORY FOR NONPARAMETRIC ENTROPY MEASURES OF SERIAL DEPENDENCE , 2005 .

[23]  C. Diks,et al.  Nonparametric Tests for Serial Independence Based on Quadratic Forms , 2005 .

[24]  Bernhard Schölkopf,et al.  A Kernel Method for the Two-Sample-Problem , 2006, NIPS.

[25]  Le Song,et al.  A Kernel Statistical Test of Independence , 2007, NIPS.

[26]  Bernhard Schölkopf,et al.  Kernel Measures of Conditional Dependence , 2007, NIPS.

[27]  Le Song,et al.  A Hilbert Space Embedding for Distributions , 2007, Discovery Science.

[28]  Jeffrey S. Racine,et al.  A versatile and robust metric entropy test of time-reversibility, and other hypotheses , 2007 .

[29]  Le Song,et al.  Kernel Measures of Independence for non-iid Data , 2008, NIPS.

[30]  Bernhard Schölkopf,et al.  Injective Hilbert Space Embeddings of Probability Measures , 2008, COLT.

[31]  Maria L. Rizzo,et al.  Brownian distance covariance , 2009, 1010.0297.

[32]  I.S.Borisov,et al.  Orthogonal series and limit theorems for canonical U- and V-statistics of stationary connected observations , 2009, 0906.5465.

[33]  A GENERALIZED PORTMANTEAU TEST FOR INDEPENDENCE BETWEEN TWO STATIONARY TIME SERIES , 2008, Econometric Theory.

[34]  Kenji Fukumizu,et al.  Universality, Characteristic Kernels and RKHS Embedding of Measures , 2010, J. Mach. Learn. Res..

[35]  Arthur Gretton,et al.  Consistent Nonparametric Tests of Independence , 2010, J. Mach. Learn. Res..

[36]  Bernhard Schölkopf,et al.  Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..

[37]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[38]  Austin J. Brockmeier,et al.  An Association Framework to Analyze Dependence Structure in Time Series , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[39]  Ingo Steinwart,et al.  Mercer’s Theorem on General Domains: On the Interaction between Measures, Kernels, and RKHSs , 2012 .

[40]  Le Song,et al.  Feature Selection via Dependence Maximization , 2012, J. Mach. Learn. Res..

[41]  Bernhard Schölkopf,et al.  Statistical analysis of coupled time series with Kernel Cross-Spectral Density operators , 2013, NIPS.