Chemogenomic profiling provides insights into the limited activity of irreversible EGFR Inhibitors in tumor cells expressing the T790M EGFR resistance mutation.

Reversible epidermal growth factor receptor (EGFR) inhibitors are the first class of small molecules to improve progression-free survival of patients with EGFR-mutated lung cancers. Second-generation EGFR inhibitors introduced to overcome acquired resistance by the T790M resistance mutation of EGFR have thus far shown limited clinical activity in patients with T790M-mutant tumors. In this study, we systematically analyzed the determinants of the activity and selectivity of the second-generation EGFR inhibitors. A focused library of irreversible as well as structurally corresponding reversible EGFR-inhibitors was synthesized for chemogenomic profiling involving over 79 genetically defined NSCLC and 19 EGFR-dependent cell lines. Overall, our results show that the growth-inhibitory potency of all irreversible inhibitors against the EGFR(T790M) resistance mutation was limited by reduced target inhibition, linked to decreased binding velocity to the mutant kinase. Combined treatment of T790M-mutant tumor cells with BIBW-2992 and the phosphoinositide-3-kinase/mammalian target of rapamycin inhibitor PI-103 led to synergistic induction of apoptosis. Our findings offer a mechanistic explanation for the limited efficacy of irreversible EGFR inhibitors in EGFR(T790M) gatekeeper-mutant tumors, and they prompt combination treatment strategies involving inhibitors that target signaling downstream of the EGFR.

[1]  C. Grütter,et al.  Structural insights into how irreversible inhibitors can overcome drug resistance in EGFR. , 2008, Bioorganic & medicinal chemistry.

[2]  Patricia L. Harris,et al.  Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. , 2004, The New England journal of medicine.

[3]  S. Gabriel,et al.  EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy , 2004, Science.

[4]  R. Wilson,et al.  EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[5]  William Pao,et al.  Identifying genotype-dependent efficacy of single and combined PI3K- and MAPK-pathway inhibition in cancer , 2009, Proceedings of the National Academy of Sciences.

[6]  M. Meyerson,et al.  The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP , 2008, Proceedings of the National Academy of Sciences.

[7]  M. Meyerson,et al.  Allele-dependent variation in the relative cellular potency of distinct EGFR inhibitors , 2007, Cancer biology & therapy.

[8]  Kwok-Kin Wong,et al.  HKI-272 in Non–Small Cell Lung Cancer , 2007, Clinical Cancer Research.

[9]  Roman K. Thomas,et al.  Systematically linking drug susceptibility to cancer genome aberrations , 2009, Cell cycle.

[10]  U. McDermott,et al.  The T790M “gatekeeper” mutation in EGFR mediates resistance to low concentrations of an irreversible EGFR inhibitor , 2008, Molecular Cancer Therapeutics.

[11]  J. Verweij,et al.  A phase I dose escalation study of BIBW 2992, an irreversible dual inhibitor of epidermal growth factor receptor 1 (EGFR) and 2 (HER2) tyrosine kinase in a 2-week on, 2-week off schedule in patients with advanced solid tumours , 2007, British Journal of Cancer.

[12]  William Pao,et al.  Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. , 2009, The Journal of clinical investigation.

[13]  P. Jänne,et al.  Mechanisms of Acquired Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non–Small Cell Lung Cancer , 2008, Clinical Cancer Research.

[14]  Matthew Meyerson,et al.  Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. , 2007, Cancer cell.

[15]  M. Meyerson,et al.  PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. , 2009, Cancer research.

[16]  M. Meyerson,et al.  Bronchial and peripheral murine lung carcinomas induced by T790M-L858R mutant EGFR respond to HKI-272 and rapamycin combination therapy. , 2007, Cancer cell.

[17]  T. Mok,et al.  Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. , 2009, The New England journal of medicine.

[18]  Daniel A. Haber,et al.  Epidermal growth factor receptor mutations in lung cancer , 2007, Nature Reviews Cancer.

[19]  M. Meyerson,et al.  BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models , 2008, Oncogene.

[20]  Laura Tolosi,et al.  Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. , 2009, The Journal of clinical investigation.