Equation of state of hot and dense QCD: resummed perturbation theory confronts lattice data

[1]  S. Shi,et al.  Conserved charge fluctuations and susceptibilities in strongly interacting matter , 2013, 1304.7752.

[2]  S. Sharma,et al.  Strangeness at high temperatures: from hadrons to quarks. , 2013, Physical review letters.

[3]  M. Strickland,et al.  Quark number susceptibilities from two-loop hard thermal loop perturbation theory , 2013, 1302.3228.

[4]  C. Schmidt Baryon number and charge fluctuations from lattice QCD , 2012, 1212.4278.

[5]  S. Borsányi Thermodynamics of the QCD transition from lattice , 2012, 1210.6901.

[6]  Jon-Ivar Skullerud,et al.  Towards the phase diagram of dense two-color matter , 2012, 1210.4496.

[7]  Nan Su,et al.  Quark number susceptibilities from resummed perturbation theory , 2012, 1210.0912.

[8]  Review on the determination of α s from the QCD static energy , 2013 .

[9]  C. Schmidt QCD bulk thermodynamics and conserved charge fluctuations with HISQ fermions , 2012, 1212.4283.

[10]  Y. Schröder A fresh look on three-loop sum-integrals , 2012, 1207.5666.

[11]  Y. Schröder,et al.  Three-loop matching coefficients for hot QCD: reduction and gauge independence , 2012, 1207.1309.

[12]  Z. Fodor,et al.  QCD equation of state at nonzero chemical potential: continuum results with physical quark masses at order μ2 , 2012, 1204.6710.

[13]  C. DeTar,et al.  Fluctuations and Correlations of net baryon number, electric charge, and strangeness: A comparison of lattice QCD results with the hadron resonance gas model , 2012, 1203.0784.

[14]  B. Wyslouch,et al.  First Results from Pb+Pb Collisions at the LHC , 2012, 1202.3233.

[15]  D. Mateos,et al.  Off-diagonal flavour susceptibilities from AdS/CFT , 2012, 1202.2533.

[16]  Z. Fodor,et al.  Fluctuations of conserved charges at finite temperature from lattice QCD , 2011, 1112.4416.

[17]  Tian Zhang,et al.  Two-color QCD via dimensional reduction , 2011, 1112.2983.

[18]  M. Strickland,et al.  Three-loop HTL QCD thermodynamics , 2011, 1103.2528.

[19]  S. Hands,et al.  Lattice study of dense matter with two colors and four flavors , 2011, 1101.4961.

[20]  H. Satz The Quark-Gluon Plasma – A Short Introduction , 2011, 1101.3937.

[21]  R. Ray,et al.  Susceptibilities with multi-quark interactions in PNJL model , 2010, 1008.0768.

[22]  H. Zong,et al.  A model study of quark-number susceptibility at finite chemical potential and temperature , 2009 .

[23]  D. Seipt,et al.  Quark mass dependence of thermal excitations in QCD in one-loop approximation , 2008, 0810.3803.

[24]  P. Forcrand,et al.  Center-Symmetric Effective Theory for High-Temperature SU(2) Yang-Mills Theory , 2008, 0801.1566.

[25]  W. Weise,et al.  Quark number susceptibilities: Lattice QCD versus PNJL model , 2007, hep-ph/0701091.

[26]  F. Renzo,et al.  The leading non-perturbative coefficient in the weak-coupling expansion of hot QCD pressure , 2006, hep-ph/0605042.

[27]  L. Yaffe,et al.  Z(3)-symmetric effective theory for SU(3) Yang-Mills theory at high temperature , 2006, hep-ph/0604100.

[28]  A. Ipp,et al.  Pressure of deconfined QCD for all temperatures and quark chemical potentials , 2006, hep-ph/0608250.

[29]  M. Laine,et al.  Quark mass thresholds in QCD thermodynamics , 2006, hep-ph/0603048.

[30]  K. Redlich,et al.  Thermodynamics of two flavor QCD to sixth order in quark chemical potential , 2005, hep-lat/0501030.

[31]  M. Strickland,et al.  Resummation in hot field theories , 2004, hep-ph/0404164.

[32]  A. Ipp,et al.  Perturbative QCD at nonzero chemical potential: Comparison with the large-N-f limit and apparent convergence , 2003, hep-ph/0311200.

[33]  A. Rebhan,et al.  Advances in perturbative thermal field theory , 2003, hep-ph/0310337.

[34]  A. Vuorinen Pressure of QCD at finite temperatures and chemical potentials , 2003, hep-ph/0305183.

[35]  A. Ipp,et al.  Thermodynamics of large-Nf QCD at finite chemical potential , 2003, hep-ph/0305030.

[36]  E. Iancu,et al.  On the Apparent Convergence of Perturbative QCD at High Temperature , 2003, hep-ph/0303045.

[37]  M. Thoma,et al.  Quark-number susceptibility, thermodynamic sum rule, and the hard thermal loop approximation , 2003, hep-ph/0303009.

[38]  A. Vuorinen Quark number susceptibilities of hot QCD up to g 6 ln g , 2002, hep-ph/0212283.

[39]  M. Laine,et al.  The Pressure of hot QCD up to g6 ln(1/g) , 2002, hep-ph/0211321.

[40]  E. Iancu,et al.  Comparing different hard-thermal-loop approaches to quark number susceptibilities , 2002, hep-ph/0206280.

[41]  M. Strickland,et al.  The equation of state for dense QCD and quark stars , 2002, hep-ph/0206196.

[42]  M. Strickland,et al.  HTL Perturbation Theory to Two Loops , 2002, hep-ph/0205085.

[43]  M. Thoma,et al.  Quark number susceptibility in hard thermal loop approximation , 2001, hep-ph/0111022.

[44]  Sourendu Gupta,et al.  Susceptibilities and screening masses in two flavor QCD , 2001, hep-lat/0110032.

[45]  E. Braaten,et al.  Solution to the 3-loop Φ -derivable approximation for massless scalar thermodynamics , 2001, hep-ph/0107118.

[46]  E. Iancu,et al.  Quark number susceptibilities from HTL-resummed thermodynamics , 2001, hep-ph/0110369.

[47]  M. Strickland,et al.  Mass expansions of screened perturbation theory , 2001, hep-ph/0105214.

[48]  F. Karsch,et al.  Quark Mass and Flavour Dependence of the QCD Phase Transition , 2000, hep-lat/0012023.

[49]  O. Philipsen Static correlation lengths in QCD at high temperature and finite density , 2000, hep-lat/0011019.

[50]  Baier,et al.  Hard-thermal-loop resummed pressure of a degenerate quark-gluon plasma , 1999, Physical review letters.

[51]  A. Peikert QCD thermodynamics with 2+1 quark flavours in lattice simulations , 2000 .

[52]  M. Strickland,et al.  Hard-thermal-loop Resummation of the Free Energy of a Hot Quark-Gluon Plasma , 1999, hep-ph/9908323.

[53]  M. Strickland,et al.  Hard-thermal-loop resummation of the thermodynamics of a hot gluon plasma , 1999, hep-ph/9905337.

[54]  M. Shaposhnikov,et al.  3d SU(N) + adjoint Higgs theory and finite-temperature QCD , 1997, hep-ph/9704416.

[55]  M. Shaposhnikov,et al.  Generic rules for high temperature dimensional reduction and their application to the Standard Model , 1996 .

[56]  Nieto,et al.  Effective field theory approach to high-temperature thermodynamics. , 1995, Physical review. D, Particles and fields.