Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations

We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.

[1]  Enrique Zuazua,et al.  Exact boundary controllability of Galerkin's approximations of Navier-Stokes equations , 1998 .

[2]  L. Hörmander,et al.  Lectures on Nonlinear Hyperbolic Differential Equations , 1997 .

[3]  J. L. Lions,et al.  Exact Controllability for Distributed Systems. Some Trends and Some Problems , 1991 .

[4]  Pierre Rouchon,et al.  Motion planning and nonlinear simulations for a tank containing a fluid , 1999, 1999 European Control Conference (ECC).

[5]  Eduardo Sontag Control of systems without drift via generic loops , 1995, IEEE Trans. Autom. Control..

[6]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .

[7]  Jean-Michel Coron,et al.  Global Exact Controllability of the 2D Navier-Stokes Equations on a Manifold without boundary , 1996 .

[8]  Andrei V. Fursikov,et al.  Exact controllability of the Navier-Stokes and Boussinesq equations , 1999 .

[9]  J L Lions,et al.  On the controllability of distributed systems. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Coron On the controllability of 2-D incompressible perfect fluids , 1996 .

[11]  Olivier Glass,et al.  Exact boundary controllability of 3-D Euler equation , 2000 .

[12]  Enrique Zuazua,et al.  Approximate controllability of a hydro-elastic coupled system , 1996 .

[13]  T. Horsin,et al.  On the controllability of the burger equation , 1998 .

[14]  Pierre Rouchon,et al.  Dynamics and solutions to some control problems for water-tank systems , 2002, IEEE Trans. Autom. Control..

[15]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[16]  J. Coron Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels , 1993 .

[17]  Jean-Michel Coron,et al.  Global asymptotic stabilization for controllable systems without drift , 1992, Math. Control. Signals Syst..

[18]  Tatsien Li,et al.  Boundary value problems for quasilinear hyperbolic systems , 1985 .

[19]  Olivier Glass Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles en dimension 3 , 1997 .

[20]  J. Coron,et al.  On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions , 1996 .