Adaptive nested optimization scheme for multidimensional global search

Methods for solving the multidimensional multiextremal optimization problems using the nested optimization scheme are considered. A novel approach for solving the multidimensional multiextremal problems based on the adaptive nested optimization has been proposed. This approach enables to develop methods of the global optimum search which are more efficient in comparison with the ones on the base of the traditional nested optimization scheme. The new approach provides advantages due to better usage of the information on the problem in the course of optimization. A general scheme of a adaptive nested optimization is described. A theoretical substantiation of the method convergence is given for the case when for solving the univariate subproblems within the nested scheme an information algorithm of global search is used. Results of numerical experiments on the well-known classes of the test multiextremal functions confirming the efficiency of the proposed scheme are presented.

[1]  Y. Sergeyev,et al.  Parallel Asynchronous Global Search and the Nested Optimization Scheme , 2001 .

[2]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[3]  Vladimir A. Grishagin,et al.  Parallel Characteristical Algorithms for Solving Problems of Global Optimization , 1997, J. Glob. Optim..

[4]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[5]  Y. Sergeyev Efficient Strategy for Adaptive Partition of N-Dimensional Intervals in the Framework of Diagonal Algorithms , 2000 .

[6]  Christodoulos A. Floudas,et al.  A review of recent advances in global optimization , 2009, J. Glob. Optim..

[7]  Donald R. Jones,et al.  Direct Global Optimization Algorithm , 2009, Encyclopedia of Optimization.

[8]  Leyuan Shi,et al.  Nested Partitions Method for Global Optimization , 2000, Oper. Res..

[9]  Harold J. Kushner,et al.  A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise , 1964 .

[10]  A. A. Zhigli︠a︡vskiĭ,et al.  Theory of Global Random Search , 1991 .

[11]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[12]  Reiner Horst,et al.  Introduction to Global Optimization (Nonconvex Optimization and Its Applications) , 2002 .

[13]  Arthur R. Butz,et al.  Space Filling Curves and Mathematical Programming , 1968, Inf. Control..

[14]  Roman G. Strongin,et al.  Introduction to Global Optimization Exploiting Space-Filling Curves , 2013 .

[15]  V. A. Grishagin,et al.  A parallel method for finding the global minimum of univariate functions , 1994 .

[16]  Yaroslav D. Sergeyev,et al.  Lipschitz gradients for global optimization in a one-point-based partitioning scheme , 2012, J. Comput. Appl. Math..

[17]  Roman G. Strongin,et al.  The information approach to multiextremal optimization problems , 1989 .

[18]  Roman G. Strongin,et al.  Parallel Computing for Globally Optimal Decision Making , 2003, PaCT.

[19]  Vladimir A. Grishagin,et al.  Local Tuning in Nested Scheme of Global Optimization , 2015, ICCS.

[20]  Clara Pizzuti,et al.  Local tuning and partition strategies for diagonal GO methods , 2003, Numerische Mathematik.

[21]  G. Mills Quantitative Decision Procedures in Management and Economics—Deterministic Theory and Applications , 1965 .

[22]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[23]  Y. D. Sergeyev,et al.  Global Optimization with Non-Convex Constraints - Sequential and Parallel Algorithms (Nonconvex Optimization and its Applications Volume 45) (Nonconvex Optimization and Its Applications) , 2000 .

[24]  A. Zhigljavsky,et al.  Comparison of independent, stratified and random covering sample schemes in optimization problems , 1996 .

[25]  B. Goertzel,et al.  Global optimization with space-filling curves , 1999 .

[26]  Y. Sergeyev,et al.  Multidimensional global optimization algorithm based on adaptive diagonal curves , 2003 .

[27]  Julius Zilinskas,et al.  Globally-biased Disimpl algorithm for expensive global optimization , 2014, Journal of Global Optimization.

[28]  Yaroslav D. Sergeyev,et al.  Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization , 2003, TOMS.

[29]  S. A. Piyavskii An algorithm for finding the absolute extremum of a function , 1972 .

[30]  Yaroslav D. Sergeyev Efficient Partition of N-Dimensional Intervals in the Framework of One-Point-Based Algorithms , 2011, ArXiv.

[31]  Alexander S. Strekalovsky,et al.  On Solving Optimization Problems with Hidden Nonconvex Structures , 2014 .

[32]  J D Pinter,et al.  Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .

[33]  Yaroslav D. Sergeyev,et al.  Deterministic approaches for solving practical black-box global optimization problems , 2015, Adv. Eng. Softw..

[34]  Michaela Bailova,et al.  Global Optimization Using Space Filling Curves , 2017 .

[35]  B. Shubert A Sequential Method Seeking the Global Maximum of a Function , 1972 .

[36]  Dick den Hertog,et al.  One-dimensional nested maximin designs , 2010, J. Glob. Optim..

[37]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.