Lateralization is Predicted by Reduced Coupling from the Left to Right Prefrontal Cortex during Semantic Decisions on Written Words

Over 90% of people activate the left hemisphere more than the right hemisphere for language processing. Here, we show that the degree to which language is left lateralized is inversely related to the degree to which left frontal regions drive activity in homotopic right frontal regions. Lateralization was assessed in 60 subjects using functional magnetic resonance imaging (fMRI) activation for semantic decisions on verbal (written words) and nonverbal (pictures of objects) stimuli. Regional interactions between left and right ventral and dorsal frontal regions were assessed using dynamic causal modeling (DCM), random-effects Bayesian model selection at the family level, and Bayesian model averaging at the connection level. We found that 1) semantic decisions on words and pictures modulated interhemispheric coupling between the left and right dorsal frontal regions, 2) activation was more left lateralized for words than pictures, and 3) for words only, left lateralization was greater when the coupling from the left to right dorsal frontal cortex was reduced. These results have theoretical implications for understanding how left and right hemispheres communicate with one another during the processing of lateralized functions.

[1]  Christine Chiarello,et al.  Varieties of Interhemispheric Inhibition, or How to Keep a Good Hemisphere Down , 1996, Brain and Cognition.

[2]  J. Kassubek,et al.  Determination of hemisphere dominance for language: comparison of frontal and temporal fMRI activation with intracarotid amytal testing , 2002, Neuroradiology.

[3]  G. Innocenti Dynamic interactions between the cerebral hemispheres , 2008, Experimental Brain Research.

[4]  W. Glaser,et al.  Context effects in stroop-like word and picture processing. , 1989, Journal of experimental psychology. General.

[5]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[6]  M. Catani,et al.  A diffusion tensor imaging tractography atlas for virtual in vivo dissections , 2008, Cortex.

[7]  D. Nelson,et al.  Mental representations for pictures and words: same or different? , 1984, The American journal of psychology.

[8]  M. Erb,et al.  fMRI reveals two distinct cerebral networks subserving speech motor control , 2005, Neurology.

[9]  M. Gazzaniga,et al.  Neuroimaging techniques offer new perspectives on callosal transfer and interhemispheric communication , 2008, Cortex.

[10]  G. Hynd,et al.  The Role of the Corpus Callosum in Interhemispheric Transfer of Information: Excitation or Inhibition? , 2005, Neuropsychology Review.

[11]  Chris A Clark,et al.  White matter pathway asymmetry underlies functional lateralization. , 2006, Cerebral cortex.

[12]  M. Moscovitch On the representation of language in the right hemisphere of right-handed people , 1976, Brain and Language.

[13]  S. Petersen,et al.  Task-Dependent Modulation of Regions in the Left Inferior Frontal Cortex during Semantic Processing , 2001, Journal of Cognitive Neuroscience.

[14]  Ferath Kherif,et al.  Explaining Function with Anatomy: Language Lateralization and Corpus Callosum Size , 2008, The Journal of Neuroscience.

[15]  N. Geschwind,et al.  Right-left asymmetrics in the brain. , 1978, Science.

[16]  H. Karbe,et al.  Collateral Inhibition of Transcallosal Activity Facilitates Functional Brain Asymmetry , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[17]  Karl J. Friston,et al.  Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri , 2022 .

[18]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.

[19]  Simon B. Eickhoff,et al.  Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM , 2008, NeuroImage.

[20]  Richard W Briggs,et al.  Left and right basal ganglia and frontal activity during language generation: Contributions to lexical, semantic, and phonological processes , 2003, Journal of the International Neuropsychological Society.

[21]  M. Seghier,et al.  Reading Aloud Boosts Connectivity through the Putamen , 2009, Cerebral cortex.

[22]  Jean-Baptiste Poline,et al.  Group analysis in functional neuroimaging: selecting subjects using similarity measures , 2003, NeuroImage.

[23]  J. Beaumont,et al.  Future Research Directions in Laterality , 1997, Neuropsychology Review.

[24]  Ron Borowsky,et al.  FMRI of Ventral and Dorsal Processing Streams in Basic Reading Processes: Insular Sensitivity to Phonology , 2006, Brain Topography.

[25]  Karl J. Friston,et al.  Bayesian model selection for group studies , 2009, NeuroImage.

[26]  M. Bryden,et al.  Laterality effects in normal subjects: Evidence for interhemispheric interactions , 1994, Behavioural Brain Research.

[27]  J. Liederman,et al.  Right hemisphere participation in reading , 1991, Brain and Language.

[28]  J. Dien A tale of two recognition systems: Implications of the fusiform face area and the visual word form area for lateralized object recognition models , 2009, Neuropsychologia.

[29]  Karl J. Friston,et al.  Dynamic causal modeling , 2010, Scholarpedia.

[30]  J. Bullier,et al.  Structural basis of cortical synchronization. I. Three types of interhemispheric coupling. , 1995, Journal of neurophysiology.

[31]  D. Hines Bilateral tachistoscopic recognitions of verbal and nonverbal stimuli. , 1972, Cortex; a journal devoted to the study of the nervous system and behavior.

[32]  Karl J. Friston Causal Modelling and Brain Connectivity in Functional Magnetic Resonance Imaging , 2009, PLoS biology.

[33]  Bryden Mp,et al.  Laterality effects in normal subjects: evidence for interhemispheric interactions. , 1994 .

[34]  M. Hoptman,et al.  How and why do the two cerebral hemispheres interact? , 1994, Psychological bulletin.

[35]  Stefano F. Cappa,et al.  Word and picture matching: a PET study of semantic category effects , 1999, Neuropsychologia.

[36]  G. Vingerhoets,et al.  MRI language dominance assessment in epilepsy patients at 1.0 T: region of interest analysis and comparison with intracarotid amytal testing , 2004, Neuroradiology.

[37]  D. Margulies,et al.  Regional Variation in Interhemispheric Coordination of Intrinsic Hemodynamic Fluctuations , 2008, The Journal of Neuroscience.

[38]  M. Koivisto,et al.  Semantic priming by pictures and words in the cerebral hemispheres. , 2000, Brain research. Cognitive brain research.

[39]  W D Hopkins,et al.  A comparative MRI study of the relationship between neuroanatomical asymmetry and interhemispheric connectivity in primates: implication for the evolution of functional asymmetries. , 2000, Behavioral neuroscience.

[40]  Dong Ik Kim,et al.  Corpus callosal connection mapping using cortical gray matter parcellation and DT‐MRI , 2008, Human brain mapping.

[41]  Karl J. Friston,et al.  Interhemispheric Integration of Visual Processing during Task-Driven Lateralization , 2007, The Journal of Neuroscience.

[42]  Asaid Khateb,et al.  Group analysis and the subject factor in functional magnetic resonance imaging: Analysis of fifty right‐handed healthy subjects in a semantic language task , 2008, Human brain mapping.

[43]  Karl J. Friston,et al.  Dynamic causal modelling for fMRI: A two-state model , 2008, NeuroImage.

[44]  N. Cook,et al.  Homotopic callosal inhibition , 1984, Brain and Language.

[45]  M. Peters,et al.  The Parallel Brain: The Cognitive Neuroscience of the Corpus Callosum , 2004 .

[46]  M. Seghier,et al.  Developmental dyslexia in Chinese and English populations: dissociating the effect of dyslexia from language differences , 2010, Brain : a journal of neurology.

[47]  J. Kuratsu,et al.  Method for quantitatively evaluating the lateralization of linguistic function using functional MR imaging. , 2001, AJNR. American journal of neuroradiology.

[48]  James T. Becker,et al.  Functional Neuroanatomy of Semantic Memory: Recognition of Semantic Associations , 1999, NeuroImage.

[49]  Karl J. Friston,et al.  Comparing Families of Dynamic Causal Models , 2010, PLoS Comput. Biol..

[50]  Takanori Kochiyama,et al.  Lexical/semantic processing in dorsal left inferior frontal gyrus , 2007, Neuroreport.

[51]  Mohamed L. Seghier,et al.  Laterality index in functional MRI: methodological issues☆ , 2008, Magnetic resonance imaging.

[52]  Volkmar Glauche,et al.  Neuroimaging the semantic system(s) , 2003 .

[53]  J. Wada Is functional hemispheric lateralization guided by structural cerebral asymmetry? , 2009, The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques.

[54]  N. Cook,et al.  The cerebral hemispheres and bilateral neural nets. , 1990, The International journal of neuroscience.

[55]  Aysenil Belger,et al.  Interhemispheric Interaction: How Do the Hemispheres Divide and Conquer a Task? , 1990, Cortex.

[56]  Keith D. White,et al.  Functional MRI of Language in Aphasia: A Review of the Literature and the Methodological Challenges , 2007, Neuropsychology Review.

[57]  M. Seghier,et al.  An anatomical signature for literacy , 2009, Nature.

[58]  Michel Rijntjes,et al.  Mechanisms of recovery in stroke patients with hemiparesis or aphasia: new insights, old questions and the meaning of therapies , 2006, Current opinion in neurology.

[59]  Bernard Mazoyer,et al.  Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing , 2006, NeuroImage.

[60]  M Koivisto,et al.  Hemispheric Asymmetries in Activation and Integration of Categorical Information , 2000, Laterality.

[61]  C Büchel,et al.  Brain regions involved in articulation , 1999, The Lancet.

[62]  Karl J. Friston,et al.  Dissociating Reading Processes on the Basis of Neuronal Interactions , 2005, Journal of Cognitive Neuroscience.

[63]  Alan C. Evans,et al.  Structural asymmetries in the human brain: a voxel-based statistical analysis of 142 MRI scans. , 2001, Cerebral cortex.

[64]  Todd B. Parrish,et al.  Altered Effective Connectivity within the Language Network in Primary Progressive Aphasia , 2007, The Journal of Neuroscience.

[65]  Richard S. J. Frackowiak,et al.  Functional anatomy of a common semantic system for words and pictures , 1996, Nature.

[66]  Michael Erb,et al.  Cerebral pathways in processing of affective prosody: A dynamic causal modeling study , 2006, NeuroImage.

[67]  S. Faure,et al.  [Hemispheric specialisation versus inter-hemispheric communication]. , 2008, Revue neurologique.

[68]  Scott T. Grafton,et al.  Structural Organization of the Corpus Callosum Predicts the Extent and Impact of Cortical Activity in the Nondominant Hemisphere , 2008, The Journal of Neuroscience.

[69]  G. Vallortigara,et al.  Advantages of having a lateralized brain , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[70]  Karl J. Friston,et al.  The Cortical Dynamics of Intelligible Speech , 2008, The Journal of Neuroscience.

[71]  D Le Bihan,et al.  Functional MR evaluation of temporal and frontal language dominance compared with the Wada test , 2000, Neurology.

[72]  Michael B. Miller,et al.  Individual variability in brain activations associated with episodic retrieval: a role for large-scale databases. , 2007, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[73]  F. Woermann,et al.  Language lateralization by Wada test and fMRI in 100 patients with epilepsy , 2003, Neurology.

[74]  M. Koivisto,et al.  Interhemispheric categorization of pictures and words , 2003, Brain and Cognition.

[75]  Stefano F. Cappa,et al.  Bilingual aphasia and language control: A follow-up fMRI and intrinsic connectivity study , 2009, Brain and Language.

[76]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[77]  M. Banich,et al.  One of Twenty Questions for the Twenty-First Century: How Do Brain Regions Interact and Integrate Information? , 2000, Brain and Cognition.

[78]  Vince D. Calhoun,et al.  Functional neural networks underlying response inhibition in adolescents and adults , 2007, Behavioural Brain Research.

[79]  Simon B. Eickhoff,et al.  Different roles of cytoarchitectonic BA 44 and BA 45 in phonological and semantic verbal fluency as revealed by dynamic causal modelling , 2009, NeuroImage.

[80]  J. A. Frost,et al.  Language dominance in neurologically normal and epilepsy subjects , 1999 .

[81]  J L Bradshaw,et al.  Interhemispheric effects on reaction time to verbal and nonverbal visual stimuli. , 1971, Journal of experimental psychology.

[82]  Karl J. Friston,et al.  Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models , 2009, Physica D. Nonlinear phenomena.

[83]  G. Flandin,et al.  Predicting Language Lateralization from Gray Matter , 2009, The Journal of Neuroscience.

[84]  Asaid Khateb,et al.  Variability of fMRI activation during a phonological and semantic language task in healthy subjects , 2004, Human brain mapping.

[85]  Gereon R. Fink,et al.  Mechanisms of hemispheric specialization: Insights from analyses of connectivity , 2007, Neuropsychologia.