Long‐Time Asymptotics for the Focusing Nonlinear Schrödinger Equation with Nonzero Boundary Conditions at Infinity and Asymptotic Stage of Modulational Instability

The long-time asymptotic behavior of the focusing nonlinear Schr\"odinger (NLS) equation on the line with symmetric nonzero boundary conditions at infinity is characterized by using the recently developed inverse scattering transform (IST) for such problems and by employing the nonlinear steepest descent method of Deift and Zhou for oscillatory Riemann-Hilbert problems. First, the IST is formulated over a single sheet of the complex plane without introducing a uniformization variable. The solution of the focusing NLS equation with nonzero boundary conditions is thus associated with a suitable matrix Riemann-Hilbert problem whose jumps grow exponentially with time for certain portions of the continuous spectrum. This growth is the signature of the well-known modulational instability within the context of the IST. This growth is then removed by suitable deformations of the Riemann-Hilbert problem in the complex spectral plane. Asymptotically in time, the $xt$-plane is found to decompose into two types of regions: a left far-field region and a right far-field region, where the solution equals the condition at infinity to leading order up to a phase shift, and a central region in which the asymptotic behavior is described by slowly modulated periodic oscillations. In the latter region, it is also shown that the modulus of the leading order solution, which is initially obtained in the form of a ratio of Jacobi theta functions, eventually reduces to the well-known elliptic solution of the focusing NLS equation. These results provide the first characterization of the long-time behavior of generic perturbations of a constant background in a modulationally unstable medium.

[1]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[2]  R. Carroll,et al.  Solution of the forced nonlinear schrödinger (nls) equation using pde techniques , 1991 .

[3]  E. Kuznetsov,et al.  Solitons in a parametrically unstable plasma , 1977 .

[4]  J. Garnier,et al.  Inverse scattering perturbation theory for the nonlinear Schrödinger equation with non-vanishing background , 2012 .

[5]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[6]  S. Venakides The infinite period limit of the inverse formalism for periodic potentials , 1988 .

[7]  Ronald R. Coifman,et al.  Scattering and inverse scattering for first order systems , 1984 .

[8]  Peter D. Miller,et al.  Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation , 2000, nlin/0012034.

[9]  E. Kuznetsov,et al.  On the stability of nonlinear waves in integrable models , 1984 .

[10]  Jean Bourgain,et al.  On nonlinear Schrödinger equations , 1998 .

[11]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[12]  YeYaojun GLOBAL SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS , 2005 .

[13]  Charles H. Townes,et al.  Self-trapping of optical beams , 1964 .

[14]  Stephanos Venakides,et al.  Long‐time asymptotics of the nonlinear Schrödinger equation shock problem , 2007 .

[15]  Jean-Michel Ghidaglia,et al.  Nonelliptic Schrödinger equations , 1993 .

[16]  P. Hacking,et al.  Riemann Surfaces , 2007 .

[17]  Paul F. Byrd,et al.  Handbook of elliptic integrals for engineers and scientists , 1971 .

[18]  I. N. Sneddon,et al.  Boundary value problems , 2007 .

[19]  CHIN-YUAN LIN,et al.  Nonlinear evolution equations , 2000 .

[20]  D. J. Benney,et al.  The Propagation of Nonlinear Wave Envelopes , 1967 .

[21]  W. Eckhaus,et al.  Nonlinear evolution equations, rescalings, model PDEs and their integrability: II , 1987 .

[22]  Robert Jenkins,et al.  Regularization of a sharp shock by the defocusing nonlinear Schrödinger equation , 2014, 1402.4708.

[23]  Tosio Kato On nonlinear Schrödinger equations, II.HS-solutions and unconditional well-posedness , 1995 .

[24]  V E Zakharov,et al.  Nonlinear stage of modulation instability. , 2012, Physical review letters.

[25]  P. Miller,et al.  On the semiclassical limit of the focusing nonlinear Schrödinger equation , 1998 .

[26]  J. Ginibre,et al.  On a class of nonlinear Schrödinger equations. II. Scattering theory, general case , 1979 .

[27]  L. Ostrovsky,et al.  Modulation instability: The beginning , 2009 .

[28]  Stephanos Venakides,et al.  On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation , 2004 .

[29]  W. Strauss,et al.  Microlocal dispersive smoothing for the Schrödinger equation , 1995 .

[30]  A. A. Gelash,et al.  Superregular solitonic solutions: a novel scenario for the nonlinear stage of modulation instability , 2012, 1211.1426.

[31]  J. Bourgain,et al.  Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations , 1993 .

[32]  T. Brooke Benjamin,et al.  The disintegration of wave trains on deep water Part 1. Theory , 1967, Journal of Fluid Mechanics.

[33]  M. Ablowitz,et al.  The Periodic Cubic Schrõdinger Equation , 1981 .

[34]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[35]  Vladimir E. Zakharov,et al.  Turbulence in Integrable Systems , 2009 .

[36]  Gino Biondini,et al.  The Integrable Nature of Modulational Instability , 2015, SIAM J. Appl. Math..

[37]  Gennady El,et al.  Modulational instability and formation of a nonlinear oscillatory structure in a “focusing” medium , 1993 .

[38]  Roger Grimshaw,et al.  Water Waves , 2021, Mathematics of Wave Propagation.

[39]  M. Moravcsik,et al.  Nonexistence of Parity Experiments in Multiparticle Reactions , 1965 .

[40]  P. Deift,et al.  An extension of the steepest descent method for Riemann-Hilbert problems: the small dispersion limit of the Korteweg-de Vries (KdV) equation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[41]  G. Ponce,et al.  Introduction to Nonlinear Dispersive Equations , 2009 .

[42]  Yan‐Chow Ma,et al.  The Perturbed Plane‐Wave Solutions of the Cubic Schrödinger Equation , 1979 .

[43]  G. El,et al.  Dam break problem for the focusing nonlinear Schrödinger equation and the generation of rogue waves , 2015, 1505.01785.

[44]  Leon A. Takhtajan,et al.  Hamiltonian methods in the theory of solitons , 1987 .

[45]  Vladimir E. Zakharov,et al.  Stability of periodic waves of finite amplitude on the surface of a deep fluid , 1968 .

[46]  Gino Biondini,et al.  Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions , 2014 .

[47]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[48]  Thierry Cazenave,et al.  The Cauchy problem for the critical nonlinear Schro¨dinger equation in H s , 1990 .

[49]  Schober,et al.  Numerical chaos, roundoff errors, and homoclinic manifolds. , 1993, Physical review letters.

[50]  Hammack,et al.  Modulated periodic stokes waves in deep water , 2000, Physical review letters.

[51]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[52]  Robert Jenkins,et al.  Semiclassical Limit of Focusing NLS for a Family of Square Barrier Initial Data , 2014 .

[53]  M. Ablowitz,et al.  Asymptotic solutions and conservation laws for the nonlinear Schrödinger equation. I , 1976 .

[54]  Luis Vega,et al.  Oscillatory integrals and regularity of dispersive equations , 1991 .

[55]  J. Bona,et al.  Nonhomogeneous Boundary-Value Problems for One-Dimensional Nonlinear Schr\"odinger Equations , 2015, 1503.00065.

[56]  Mark J. Ablowitz,et al.  On homoclinic structure and numerically induced chaos for the nonlinear Schro¨dinger equation , 1990 .

[57]  Y. Tsutsumi L$^2$-Solutions for Nonlinear Schrodinger Equations and Nonlinear Groups , 1985 .

[58]  S. Kamvissis On the long time behavior of the doubly infinite toda lattice under initial data decaying at infinity , 1993 .

[59]  Mark J. Ablowitz,et al.  Method for Solving the Sine-Gordon Equation , 1973 .

[60]  E. Kuznetsov,et al.  Stability of stationary waves in nonlinear weakly dispersive media , 1975 .

[61]  Ghosh Roy,et al.  Methods of Inverse Problems in Physics , 1991 .

[62]  Gino Biondini,et al.  Universal Nature of the Nonlinear Stage of Modulational Instability. , 2015, Physical review letters.

[63]  J. Holmer The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line , 2005, Differential and Integral Equations.

[64]  S. Manakov,et al.  Asymptotic behavior of non-linear wave systems integrated by the inverse scattering method , 1996 .

[65]  Walter Craig,et al.  Nonlinear modulation of gravity waves: a rigorous approach , 1992 .

[66]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.

[67]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[68]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[69]  E. Kuznetsov,et al.  Modulation instability of soliton trains in fiber communication systems , 1999 .

[70]  V. E. Zakharov,et al.  Integrable turbulence and formation of rogue waves , 2014, 1409.4692.

[71]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[72]  D. H. Peregrine,et al.  Water waves, nonlinear Schrödinger equations and their solutions , 1983, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[73]  A. Kamchatnov,et al.  Nonlinear periodic waves and their modulations , 2000 .

[74]  A. Fokas,et al.  The nonlinear Schrödinger equation on the interval , 2004 .

[75]  N. Hoffmann,et al.  Rogue wave observation in a water wave tank. , 2011, Physical review letters.

[76]  David Lannes,et al.  The Water Waves Problem: Mathematical Analysis and Asymptotics , 2013 .

[77]  A. B. Shabat,et al.  Interaction between solitons in a stable medium , 1973 .

[78]  P. Deift,et al.  The collisionless shock region for the long-time behavior of solutions of the KdV equation , 1994 .

[79]  Hiroaki Ono,et al.  Nonlinear Modulation of Gravity Waves , 1972 .

[80]  P. Miller,et al.  On the semi–classical limit for the focusing nonlinear Schrödinger equation: sensitivity to analytic properties of the initial data , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[81]  Percy Deift,et al.  Long-time behavior of the non-focusing nonlinear Schrödinger equation : a case study , 1994 .

[82]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[83]  E. Belokolos,et al.  Algebro-geometric approach to nonlinear integrable equations , 1994 .

[84]  F. D. Gakhov RIEMANN BOUNDARY VALUE PROBLEM , 1966 .

[85]  Dmitry Shepelsky,et al.  Focusing NLS Equation: Long-Time Dynamics of Step-Like Initial Data , 2010 .

[86]  V. I. Talanov SELF-FOCUSING OF ELECTROMAGNETIC WAVES IN NON-LINEAR MEDIA , 1964 .