A DFT-based genetic algorithm search for AuCu nanoalloy electrocatalysts for CO₂ reduction.

Using a DFT-based genetic algorithm (GA) approach, we have determined the most stable structure and stoichiometry of a 309-atom icosahedral AuCu nanoalloy, for potential use as an electrocatalyst for CO2 reduction. The identified core-shell nano-particle consists of a copper core interspersed with gold atoms having only copper neighbors and a gold surface with a few copper atoms in the terraces. We also present an adsorbate-dependent correction scheme, which enables an accurate determination of adsorption energies using a computationally fast, localized LCAO-basis set. These show that it is possible to use the LCAO mode to obtain a realistic estimate of the molecular chemisorption energy for systems where the computation in normal grid mode is not computationally feasible. These corrections are employed when calculating adsorption energies on the Cu, Au and most stable mixed particles. This shows that the mixed Cu135@Au174 core-shell nanoalloy has a similar adsorption energy, for the most favorable site, as a pure gold nano-particle. Cu, however, has the effect of stabilizing the icosahedral structure because Au particles are easily distorted when adding adsorbates.

[1]  Juan Martín Montejano-Carrizales,et al.  Geometrical characteristics of compact nanoclusters , 1992 .

[2]  Jens K Nørskov,et al.  Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. , 2014, Physical chemistry chemical physics : PCCP.

[3]  Peter Schwerdtfeger,et al.  Convergence of the many-body expansion of interaction potentials: From van der Waals to covalent and metallic systems , 2007 .

[4]  William J. Durand,et al.  The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. , 2012, Physical chemistry chemical physics : PCCP.

[5]  J. J. Kim,et al.  Reduction of CO2 and CO to methane on Cu foil electrodes , 1988 .

[6]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[7]  Xia Wu,et al.  Optimization of bimetallic Cu–Au and Ag–Au clusters by using a modified adaptive immune optimization algorithm , 2009, J. Comput. Chem..

[8]  Haifeng Lv,et al.  Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. , 2013, Journal of the American Chemical Society.

[9]  Bjørk Hammer,et al.  A genetic algorithm for first principles global structure optimization of supported nano structures. , 2014, The Journal of chemical physics.

[10]  Kristian Sommer Thygesen,et al.  Localized atomic basis set in the projector augmented wave method , 2009, 1303.0348.

[11]  Alessandro Fortunelli,et al.  Structures and energetics of 98 atom Pd-Pt nanoalloys: potential stability of the Leary tetrahedron for bimetallic nanoparticles. , 2007, Physical chemistry chemical physics : PCCP.

[12]  A. Fortunelli,et al.  A grouping approach to homotop global optimization in alloy nanoparticles. , 2014, Physical chemistry chemical physics : PCCP.

[13]  Y. Hori,et al.  Electrochemical reduction of carbon dioxides to carbon monoxide at a gold electrode in aqueous potassium hydrogen carbonate , 1987 .

[14]  Riccardo Ferrando,et al.  Searching for the optimum structures of alloy nanoclusters. , 2008, Physical chemistry chemical physics : PCCP.

[15]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[16]  Jonathan P. K. Doye,et al.  TOPICAL REVIEW: The effect of the range of the potential on the structure and stability of simple liquids: from clusters to bulk, from sodium to ? , 1996 .

[17]  Jens K Nørskov,et al.  Investigation of Catalytic Finite-Size-Effects of Platinum Metal Clusters. , 2013, The journal of physical chemistry letters.

[18]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[19]  R. Palmer,et al.  Atomic structure control of size-selected gold nanoclusters during formation. , 2014, Journal of the American Chemical Society.

[20]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[21]  P J Hsu,et al.  Structures of bimetallic clusters. , 2006, The Journal of chemical physics.

[22]  Masatake Haruta,et al.  Size- and support-dependency in the catalysis of gold , 1997 .

[23]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[24]  G. Rossi,et al.  Global optimisation and growth simulation of AuCu clusters. , 2008, Faraday discussions.

[25]  R. Johnston,et al.  Modeling calcium and strontium clusters with many-body potentials , 1997 .

[26]  Giulia Rossi,et al.  Global optimization of bimetallic cluster structures. I. Size-mismatched Ag-Cu, Ag-Ni, and Au-Cu systems. , 2005, The Journal of chemical physics.

[27]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[28]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[29]  Giulia Rossi,et al.  Electronic and structural shell closure in AgCu and AuCu nanoclusters. , 2006, The journal of physical chemistry. B.

[30]  Toshio Hayashi,et al.  Selective Vapor-Phase Epoxidation of Propylene over Au/TiO2Catalysts in the Presence of Oxygen and Hydrogen , 1998 .

[31]  J. Rogan,et al.  Alternative search strategy for minimal energy nanocluster structures: the case of rhodium, palladium, and silver. , 2006, The Journal of chemical physics.

[32]  Zhi Wang,et al.  Controlled formation of mass-selected Cu-Au core-shell cluster beams. , 2011, Journal of the American Chemical Society.

[33]  Hélio A. Duarte,et al.  Global optimization analysis of CunAum (n + m = 38) clusters: Complementary ab initio calculations , 2008 .

[34]  A Shayeghi,et al.  Pool-BCGA: a parallelised generation-free genetic algorithm for the ab initio global optimisation of nanoalloy clusters. , 2015, Physical chemistry chemical physics : PCCP.

[35]  M. Baskes,et al.  Monte Carlo simulations of segregation in Pt-Ni catalyst nanoparticles. , 2004, The Journal of chemical physics.

[36]  U. Pal,et al.  Transmission electron microscopy and theoretical analysis of AuCu nanoparticles: Atomic distribution and dynamic behavior , 2006, Microscopy research and technique.

[37]  Kaname Ito,et al.  Kinetics of Electrochemical Reduction of Carbon Dioxide on a Gold Electrode in Phosphate Buffer Solutions , 1995 .

[38]  F. Baletto,et al.  Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects , 2005 .

[39]  Andrew A. Peterson,et al.  How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels , 2010 .

[40]  Andrew J. Medford,et al.  Finite-Size Effects in O and CO Adsorption for the Late Transition Metals , 2012, Topics in Catalysis.

[41]  Karsten Wedel Jacobsen,et al.  A semi-empirical effective medium theory for metals and alloys , 1996 .

[42]  Jens K Nørskov,et al.  Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO2 Reduction to CO. , 2013, The journal of physical chemistry letters.

[43]  E. H. Fink,et al.  Relative line intensities in the lyman bands of HD , 1969 .

[44]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[45]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[46]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[47]  P. A. Marcos,et al.  Structural and dynamical properties of Cu–Au bimetallic clusters , 1996 .

[48]  Zaiping Guo,et al.  Preparation and characterization of spinel Li4Ti5O12 nanoparticles anode materials for lithium ion battery , 2012, Journal of Nanoparticle Research.

[49]  D. Sánchez-Portal,et al.  Lowest Energy Structures of Gold Nanoclusters , 1998 .

[50]  Roy L Johnston,et al.  Theoretical study of Cu(38-n)Au(n) clusters using a combined empirical potential-density functional approach. , 2009, Physical chemistry chemical physics : PCCP.

[51]  J. Greeley,et al.  Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. , 2014, Journal of the American Chemical Society.

[52]  Andrew A. Peterson,et al.  Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts , 2012 .

[53]  Roy L. Johnston,et al.  Determination of main structural compositions of nanoalloy clusters of CuxAuy (x + y ≤ 30) using a genetic algorithm approach , 2003 .

[54]  Julius Jellinek,et al.  NinAlm alloy clusters: analysis of structural forms and their energy ordering , 1996 .

[55]  Matthew W Kanan,et al.  CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. , 2012, Journal of the American Chemical Society.

[56]  F. Calvo,et al.  Composition-induced structural transitions in mixed rare-gas clusters , 2004 .

[57]  Wenchuan Wang,et al.  Thermal behavior of core-shell and three-shell layered clusters: Melting of Cu 1 Au 54 and Cu 12 Au 43 , 2006 .

[58]  R. Palmer,et al.  Ageing of mass-selected Cu/Au and Au/Cu core/shell clusters probed with atomic resolution , 2012 .

[59]  Bjørk Hammer,et al.  Systematic study of Au6 to Au12 gold clusters on MgO(100) F centers using density-functional theory. , 2012, Physical review letters.

[60]  Peter Strasser,et al.  Particle size effects in the catalytic electroreduction of CO₂ on Cu nanoparticles. , 2014, Journal of the American Chemical Society.

[61]  Roy L. Johnston,et al.  Theoretical study of Cu–Au nanoalloy clusters using a genetic algorithm , 2002 .

[62]  Tejs Vegge,et al.  Genetic Algorithm Procreation Operators for Alloy Nanoparticle Catalysts , 2014, Topics in Catalysis.

[63]  Hongyi Zhang,et al.  Active and selective conversion of CO2 to CO on ultrathin Au nanowires. , 2014, Journal of the American Chemical Society.

[64]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[65]  Wolfgang Ziegler,et al.  Modern Aspects Of Electrochemistry , 2016 .

[66]  R. Palmer,et al.  Formation of bimetallic nanoalloys by Au coating of size-selected Cu clusters , 2012, Journal of Nanoparticle Research.

[67]  Roy L. Johnston,et al.  A theoretical study of atom ordering in copper–gold nanoalloy clusters , 2002 .

[68]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[69]  Abdullah M. Asiri,et al.  Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles , 2014, Nature Communications.