Transient three-dimensional thermal model for batteries with thin electrodes

[1]  Salvio Chacko,et al.  Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles , 2012 .

[2]  Xiangming He,et al.  Electro-thermal modeling and experimental validation for lithium ion battery , 2012 .

[3]  Majid Bahrami,et al.  Investigating electrical contact resistance losses in lithium-ion battery assemblies for hybrid and , 2011 .

[4]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[5]  T. Ishihara,et al.  Novel graphite/TiO2 electrochemical cells as a safe electric energy storage system , 2010 .

[6]  U. Kim,et al.  Modeling for the scale-up of a lithium-ion polymer battery , 2009 .

[7]  J. Selman,et al.  Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution , 2008 .

[8]  U. Kim,et al.  Effect of electrode configuration on the thermal behavior of a lithium-polymer battery , 2008 .

[9]  Gi‐Heon Kim,et al.  A three-dimensional thermal abuse model for lithium-ion cells , 2007 .

[10]  Y. Inui,et al.  Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries , 2007 .

[11]  S. Chakraborty,et al.  New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries , 2006 .

[12]  Chaoyang Wang,et al.  Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles , 2006 .

[13]  Chee Burm Shin,et al.  A two-dimensional modeling of a lithium-polymer battery , 2006 .

[14]  B. Jung,et al.  Mechanism of gas build-up in a Li-ion cell at elevated temperature , 2004 .

[15]  Kang Xu,et al.  A new approach toward improved low temperature performance of Li-ion battery , 2002 .

[16]  J. Selman,et al.  Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications , 2002 .

[17]  Paul A. Nelson,et al.  Design modeling of lithium-ion battery performance. , 2002 .

[18]  Ralph E. White,et al.  Mathematical modeling of secondary lithium batteries , 2000 .

[19]  Ralph E. White,et al.  Influence of Some Design Variables on the Thermal Behavior of a Lithium‐Ion Cell , 1999 .

[20]  James W. Evans,et al.  The Thermal Stability of Lithium Polymer Batteries , 1998 .

[21]  J. Newman,et al.  Heat‐Generation Rate and General Energy Balance for Insertion Battery Systems , 1997 .

[22]  James W. Evans,et al.  Thermal Analysis of Lithium‐Ion Batteries , 1996 .

[23]  J. Newman,et al.  Thermal Modeling of the Lithium/Polymer Battery .1. Discharge Behavior of a Single-Cell , 1995 .

[24]  John Newman,et al.  Temperature Rise in a Battery Module with Constant Heat Generation , 1995 .

[25]  James W. Evans,et al.  Three‐Dimensional Thermal Modeling of Lithium‐Polymer Batteries under Galvanostatic Discharge and Dynamic Power Profile , 1994 .

[26]  James W. Evans,et al.  Heat Transfer Phenomena in Lithium/Polymer‐Electrolyte Batteries for Electric Vehicle Application , 1993 .

[27]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[28]  J. R. Driscoll,et al.  Catastrophic thermal runaway in lithium batteries , 1987 .

[29]  H. S. Carslow,et al.  Conduction of Heat in Solids, Second Edition , 1986 .

[30]  Johnsee Lee,et al.  Three‐Dimensional Thermal Modeling of Electric Vehicle Batteries , 1985 .

[31]  John Newman,et al.  A General Energy Balance for Battery Systems , 1984 .

[32]  D. Tarzia,et al.  BOUNDARY VALUE PROBLEMS IN HEAT CONDUCTION , 2014 .

[33]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[34]  M. N. Özişik Boundary value problems of heat conduction , 1989 .

[35]  L. Rosenhead Conduction of Heat in Solids , 1947, Nature.