Ten years of genetic fuzzy systems: current framework and new trends

Fuzzy systems have demonstrated their ability to solve different kinds of problems in various application domains. Currently, there is an increasing interest to augment fuzzy systems with learning and adaptation capabilities. Two of the most successful approaches to hybridise fuzzy systems with learning and adaptation methods have been made in the realm of soft computing. Neural fuzzy systems and genetic fuzzy systems hybridise the approximate reasoning method of fuzzy systems with the learning capabilities of neural networks and evolutionary algorithms. The objective of this paper is to provide an account of genetic fuzzy systems, with special attention to genetic fuzzy rule-based systems. After a brief introduction to models and applications of genetic fuzzy systems, the field is overviewed, new trends are identified, a critical evaluation of genetic fuzzy systems for fuzzy knowledge extraction is elaborated, and open questions that remain to be addressed in the future are raised. The paper also includes some of the key references required to quickly access implementation details of genetic fuzzy systems.

[1]  Alistair Munro,et al.  Evolving fuzzy rule based controllers using genetic algorithms , 1996, Fuzzy Sets Syst..

[2]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[3]  Antonio F. Gómez-Skarmeta,et al.  Fuzzy modeling with hybrid systems , 1999, Fuzzy Sets Syst..

[4]  H. Takagi,et al.  Integrating Design Stages of Fuzzy Systems using Genetic Algorithms 1 , 1993 .

[5]  Richard Lai,et al.  Constraining the optimization of a fuzzy logic controller using an enhanced genetic algorithm , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[6]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[7]  Francisco Herrera,et al.  Genetic Fuzzy Systems - Evolutionary Tuning and Learning of Fuzzy Knowledge Bases , 2002, Advances in Fuzzy Systems - Applications and Theory.

[8]  Francisco Herrera,et al.  Genetic Algorithms and Soft Computing , 1996 .

[9]  Yaochu Jin,et al.  Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement , 2000, IEEE Trans. Fuzzy Syst..

[10]  Andrea Bonarini,et al.  Evolutionary Learning of Fuzzy rules: competition and cooperation , 1996 .

[11]  Jose M. Benjorge,et al.  Fuzzy Control of HVAC Systems Optimized by Genetic Algorithms , 2003 .

[12]  Robert Fullér,et al.  Introduction to neuro-fuzzy systems , 1999, Advances in soft computing.

[13]  María José del Jesús,et al.  MOGUL: A methodology to obtain genetic fuzzy rule-based systems under the iterative rule learning approach , 1999, Int. J. Intell. Syst..

[14]  Gilles Venturini,et al.  SIA: A Supervised Inductive Algorithm with Genetic Search for Learning Attributes based Concepts , 1993, ECML.

[15]  Tzung-Pei Hong,et al.  Finding relevant attributes and membership functions , 1999, Fuzzy Sets Syst..

[16]  Chih-Ming Chen,et al.  An efficient fuzzy classifier with feature selection based on fuzzy entropy , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[17]  Enrique Alba,et al.  Parallelism and evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..

[18]  Andreas Geyer-Schulz,et al.  Fuzzy Rule-Based Expert Systems and Genetic Machine Learning , 1996 .

[19]  Plamen Angelov,et al.  Evolving Rule-Based Models: A Tool For Design Of Flexible Adaptive Systems , 2002 .

[20]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[21]  Detlef Nauck,et al.  Foundations Of Neuro-Fuzzy Systems , 1997 .

[22]  Luciano Sánchez Ramos,et al.  Niching scheme for steady state GA-P and its application to fuzzy rule based classifiers induction , 2000 .

[23]  Francisco Herrera,et al.  Linguistic modeling with weighted double-consequent fuzzy rules based on cooperative coevolution , 2003, EUSFLAT Conf..

[24]  Pai-Yi Huang,et al.  Real-coded genetic algorithm based fuzzy sliding-mode control design for precision positioning , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[25]  Michael R. Berthold,et al.  Input features' impact on fuzzy decision processes , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[26]  Kauko Leiviskä Industrial Applications of Soft Computing , 2001 .

[27]  Dr. Hans Hellendoorn,et al.  An Introduction to Fuzzy Control , 1996, Springer Berlin Heidelberg.

[28]  María José del Jesús,et al.  Genetic learning of fuzzy rule-based classification systems cooperating with fuzzy reasoning methods , 1998, Int. J. Intell. Syst..

[29]  Antonio González Muñoz,et al.  Table Ii Tc Pattern Recognition Result for 120 Eir Satellite Image Cases Selection of Relevant Features in a Fuzzy Genetic Learning Algorithm , 2001 .

[30]  Philip R. Thrift,et al.  Fuzzy Logic Synthesis with Genetic Algorithms , 1991, ICGA.

[31]  J. Liska,et al.  Complete design of fuzzy logic systems using genetic algorithms , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[32]  Kevin D. Reilly,et al.  Genetic learning algorithms for fuzzy neural nets , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[33]  Juan R. Velasco Genetic-based on-line learning for fuzzy process control , 1998, Int. J. Intell. Syst..

[34]  Seppo J. Ovaska,et al.  Industrial applications of soft computing: a review , 2001, Proc. IEEE.

[35]  P. Nordin Genetic Programming III - Darwinian Invention and Problem Solving , 1999 .

[36]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[37]  Yoshiki Uchikawa,et al.  An efficient finding of fuzzy rules using a new approach to genetic based machine learning , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[38]  P. Dokopoulos,et al.  A fuzzy expert system for the forecasting of wind speed and power generation in wind farms , 2001, PICA 2001. Innovative Computing for Power - Electric Energy Meets the Market. 22nd IEEE Power Engineering Society. International Conference on Power Industry Computer Applications (Cat. No.01CH37195).

[39]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[40]  Marco Russo,et al.  FuGeNeSys-a fuzzy genetic neural system for fuzzy modeling , 1998, IEEE Trans. Fuzzy Syst..

[41]  Francisco Herrera,et al.  A Two-stage Evolutionary Process for Designing Tsk Fuzzy Rule-based Systems a Two-stage Evolutionary Process for Designing Tsk Fuzzy Rule-based Systems , 1996 .

[42]  Tim Kovacs Learning classifier systems resources , 2002, Soft Comput..

[43]  Antonio González Muñoz,et al.  Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm , 2001, Fuzzy Sets Syst..

[44]  Francisco Herrera,et al.  A CLASSIFIED REVIEW ON THE COMBINATION FUZZY LOGIC–GENETIC ALGORITHMS BIBLIOGRAPHY: 1989–1995 , 1997 .

[45]  Witold Pedrycz,et al.  Fuzzy evolutionary computation , 1997 .

[46]  José Manuel Benítez,et al.  Interpretation of artificial neural networks by means of fuzzy rules , 2002, IEEE Trans. Neural Networks.

[47]  Oliver Nelles,et al.  Genetic programming for model selection of TSK-fuzzy systems , 2001, Inf. Sci..

[48]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[49]  Jyh-Shing Roger Jang,et al.  Evolving color recipes , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[50]  Charles L. Karr,et al.  Genetic algorithms for fuzzy controllers , 1991 .

[51]  Fernando José Von Zuben,et al.  Hierarchical genetic fuzzy systems , 2001, Inf. Sci..

[52]  Hee-Soo Hwang,et al.  Control strategy for optimal compromise between trip time and energy consumption in a high-speed railway , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[53]  Jesús S. Aguilar-Ruiz,et al.  Improving the Evolutionary Coding for Machine Learning Tasks , 2002, ECAI.

[54]  Henning Heider,et al.  A cascaded genetic algorithm for improving fuzzy-system design , 1997, Int. J. Approx. Reason..

[55]  T. Van Le Evolutionary fuzzy clustering , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[56]  Witold Pedrycz,et al.  Context adaptation in fuzzy processing and genetic algorithms , 1998, Int. J. Intell. Syst..

[57]  Takeshi Furuhashi,et al.  Development of if-then rules with the use of DNA coding , 1997 .

[58]  Antonio González Muñoz,et al.  An experimental study about the search mechanism in the SLAVE learning algorithm: Hill-climbing methods versus genetic algorithms , 2001, Inf. Sci..

[59]  Plamen Angelov,et al.  Evolving Rule-Based Models: A Tool For Design Of Flexible Adaptive Systems , 2002 .

[60]  Francisco Herrera,et al.  Hybridizing genetic algorithms with sharing scheme and evolution strategies for designing approximate fuzzy rule-based systems , 2001, Fuzzy Sets Syst..

[61]  Manuel Valenzuela-Rendón The Fuzzy Classifier System: Motivations and first Results , 1990, PPSN.

[62]  Tzung-Pei Hong,et al.  Learning discriminant functions with fuzzy attributes for classification using genetic programming , 2002, Expert systems with applications.

[63]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[64]  Hong Yan,et al.  Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition , 1996, Advances in Fuzzy Systems - Applications and Theory.

[65]  Isao Hayashi,et al.  NN-driven fuzzy reasoning , 1991, Int. J. Approx. Reason..

[66]  Lotfi A. Zadeh,et al.  Fuzzy sets and systems , 1990 .

[67]  J. Bezdek,et al.  Genetic fuzzy clustering , 1994, NAFIPS/IFIS/NASA '94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige.

[68]  Francisco Herrera,et al.  Learning with Genetic Algorithms , 2001 .

[69]  Hisao Ishibuchi,et al.  Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[70]  Roy George,et al.  Fuzzy clustering with genetic search , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[71]  Rafael Alcalá,et al.  Fuzzy Control of HVAC Systems Optimized by Genetic Algorithms , 2003, Applied Intelligence.

[72]  Tim Kovacs What should a classifier system learn and how should we measure it? , 2002, Soft Comput..

[73]  Derek A. Linkens,et al.  Evolutionary learning in neural fuzzy control systems , 1997 .

[74]  Sofiane Achiche,et al.  Fuzzy decision support system knowledge base generation using a genetic algorithm , 2001, Int. J. Approx. Reason..

[75]  Alexandre Parodi,et al.  A New Approach to Fuzzy Classifier Systems , 1993, ICGA.

[76]  Witold Pedrycz,et al.  Fuzzy Set Based Neural Networks: Structure, Learning and Application , 1999, J. Adv. Comput. Intell. Intell. Informatics.

[77]  Takeshi Furuhashi,et al.  Fuzzy system parameters discovery by bacterial evolutionary algorithm , 1999, IEEE Trans. Fuzzy Syst..

[78]  Kenneth A. De Jong,et al.  Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents , 2000, Evolutionary Computation.

[79]  Magne Setnes,et al.  GA-fuzzy modeling and classification: complexity and performance , 2000, IEEE Trans. Fuzzy Syst..

[80]  H. Ishibuchi Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases , 2004 .

[81]  Antonio González Muñoz,et al.  SLAVE: a genetic learning system based on an iterative approach , 1999, IEEE Trans. Fuzzy Syst..

[82]  Luis Magdalena,et al.  A Fuzzy logic controller with learning through the evolution of its knowledge base , 1997, Int. J. Approx. Reason..

[83]  John H. Holland,et al.  Cognitive systems based on adaptive algorithms , 1977, SGAR.

[84]  Frank Klawonn,et al.  Modifications of genetic algorithms for designing and optimizing fuzzy controllers , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[85]  Francisco Herrera,et al.  A genetic learning process for the scaling factors, granularity and contexts of the fuzzy rule-based system data base , 2001, Inf. Sci..

[86]  Pierre-Yves Glorennec Coordination between autonomous robots , 1997, Int. J. Approx. Reason..

[87]  Daijin Kim,et al.  An optimal design of neuro-FLC by Lamarckian co-adaptation of learning and evolution , 2001, Fuzzy Sets Syst..

[88]  Inés Couso,et al.  Combining GP operators with SA search to evolve fuzzy rule based classifiers , 2001, Inf. Sci..

[89]  Francisco Herrera,et al.  Generating the knowledge base of a fuzzy rule-based system by the genetic learning of the data base , 2001, IEEE Trans. Fuzzy Syst..

[90]  M.A. Lee,et al.  Integrating design stage of fuzzy systems using genetic algorithms , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[91]  G. Klir,et al.  Evolutionary fuzzy c-means clustering algorithm , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[92]  Piero P. Bonissone,et al.  Hybrid soft computing systems: industrial and commercial applications , 1999, Proc. IEEE.

[93]  Uwe D. Hanebeck,et al.  Genetic optimization of fuzzy networks , 1996, Fuzzy Sets Syst..

[94]  J. M. Ben,et al.  Are Arti cial Neural Networks Black Boxes ? , 1996 .

[95]  Martin V. Butz,et al.  Anticipatory Learning Classifier Systems , 2002, Genetic Algorithms and Evolutionary Computation.

[96]  Magne Setnes,et al.  Compact and transparent fuzzy models and classifiers through iterative complexity reduction , 2001, IEEE Trans. Fuzzy Syst..

[97]  Ioannis B. Theocharis,et al.  A GA-based fuzzy modeling approach for generating TSK models , 2002, Fuzzy Sets Syst..

[98]  Erick Cantú-Paz,et al.  Efficient and Accurate Parallel Genetic Algorithms , 2000, Genetic Algorithms and Evolutionary Computation.

[99]  K. C. Ng,et al.  Design of sophisticated fuzzy logic controllers using genetic algorithms , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[100]  Francisco Herrera,et al.  Linguistic modeling by hierarchical systems of linguistic rules , 2002, IEEE Trans. Fuzzy Syst..

[101]  Luis Magdalena,et al.  Adapting the gain of an FLC with genetic algorithms , 1997, Int. J. Approx. Reason..

[102]  Minsup Shim,et al.  Application of evolutionary computations at LG Electronics , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[103]  Stephen F. Smith,et al.  A learning system based on genetic adaptive algorithms , 1980 .

[104]  Hisao Ishibuchi,et al.  Effect of rule weights in fuzzy rule-based classification systems , 2001, IEEE Trans. Fuzzy Syst..

[105]  C. L. Karr,et al.  Fuzzy control of pH using genetic algorithms , 1993, IEEE Trans. Fuzzy Syst..

[106]  Piero P. Bonissone,et al.  Genetic algorithms for automated tuning of fuzzy controllers: a transportation application , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[107]  M. Lozano,et al.  MOGUL: A methodology to obtain genetic fuzzy rule‐based systems under the iterative rule learning approach , 1999 .

[108]  Donald A. Waterman,et al.  Pattern-Directed Inference Systems , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[109]  H. B. Gürocak,et al.  A genetic-algorithm-based method for tuning fuzzy logic controllers , 1999, Fuzzy Sets Syst..

[110]  Héctor Pomares,et al.  Multidimensional and multideme genetic algorithms for the construction of fuzzy systems , 2001, Int. J. Approx. Reason..

[111]  Kazuo Furuta,et al.  Evolutionary learning of fuzzy logic controllers and their adaptation through perpetual evolution , 2002, IEEE Trans. Fuzzy Syst..

[112]  John R. Koza,et al.  Genetic Programming III: Darwinian Invention & Problem Solving , 1999 .

[113]  Francisco Herrera,et al.  A proposal for improving the accuracy of linguistic modeling , 2000, IEEE Trans. Fuzzy Syst..

[114]  Chia-Ju Wu,et al.  Design of fuzzy logic controllers using genetic algorithms , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[115]  Robert Babuska,et al.  Fuzzy Modeling for Control , 1998 .

[116]  Arthur C. Sanderson,et al.  Fuzzy logic controlled genetic algorithms versus tuned genetic algorithms: an agile manufacturing application , 1998, Proceedings of the 1998 IEEE International Symposium on Intelligent Control (ISIC) held jointly with IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA) Intell.

[117]  K. D. Jong Learning with Genetic Algorithms: An Overview , 2005, Machine Learning.

[118]  Hisao Ishibuchi,et al.  Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems , 1997, Fuzzy Sets Syst..

[119]  Kenneth DeJong,et al.  Learning with genetic algorithms: An overview , 1988, Machine Learning.

[120]  Stewart W. Wilson,et al.  Learning Classifier Systems, From Foundations to Applications , 2000 .

[121]  María José del Jesús,et al.  Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems , 2001, Inf. Sci..

[122]  J.Ma Troya Linero,et al.  Evolutionary design of fuzzy logic controllers using strongly-typed GP , 1999 .

[123]  Hisao Ishibuchi,et al.  Three-objective genetics-based machine learning for linguistic rule extraction , 2001, Inf. Sci..

[124]  G. Langholz,et al.  Genetic-Based New Fuzzy Reasoning Models with Application to Fuzzy Control , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[125]  Hisao Ishibuchi,et al.  Selecting fuzzy if-then rules for classification problems using genetic algorithms , 1995, IEEE Trans. Fuzzy Syst..

[126]  Takanori Shibata,et al.  Genetic Algorithms And Fuzzy Logic Systems Soft Computing Perspectives , 1997 .

[127]  K. De Jong Learning with Genetic Algorithms: An Overview , 1988 .

[128]  Francisco Herrera,et al.  Tuning fuzzy logic controllers by genetic algorithms , 1995, Int. J. Approx. Reason..

[129]  Frank Hoffmann,et al.  Evolutionary design of a fuzzy knowledge base for a mobile robot , 1997, Int. J. Approx. Reason..

[130]  John H. Holland,et al.  COGNITIVE SYSTEMS BASED ON ADAPTIVE ALGORITHMS1 , 1978 .

[131]  Chin-Teng Lin,et al.  A GA-based fuzzy adaptive learning control network , 2000, Fuzzy Sets Syst..

[132]  Francisco Herrera,et al.  A three-stage evolutionary process for learning descriptive and approximate fuzzy-logic-controller knowledge bases from examples , 1997, Int. J. Approx. Reason..

[133]  Chin-Teng Lin,et al.  Neural-Network-Based Fuzzy Logic Control and Decision System , 1991, IEEE Trans. Computers.

[134]  Raj Subbu,et al.  Evolutionary optimization of fuzzy decision systems for automated insurance underwriting , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[135]  Tzung-Pei Hong,et al.  Integrating fuzzy knowledge by genetic algorithms , 1998, IEEE Trans. Evol. Comput..

[136]  Ignacio Requena,et al.  Are artificial neural networks black boxes? , 1997, IEEE Trans. Neural Networks.

[137]  Michael Kolonko,et al.  Multidimensional Optimization with a Fuzzy Genetic Algorithm , 1998, J. Heuristics.

[138]  Moshe Sipper,et al.  Fuzzy CoCo: a cooperative-coevolutionary approach to fuzzy modeling , 2001, IEEE Trans. Fuzzy Syst..

[139]  Sina Balkir,et al.  Evolution-based design of neural fuzzy networks using self-adapting genetic parameters , 2002, IEEE Trans. Fuzzy Syst..